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ABSTRACT

Borda’s social choice method and Condorcet’s social choice method are shown to sat-
isfy different monotonicities and it is shown that it is impossible for any social choice
method to satisfy them both. Results of a Monte Carlo simulation are presented which es-
timate the probability of each of the following social choice methods being manipulable:
plurality (first past the post), Borda count, instant runoff, Kemeny-Young, Schulze, and ma-
jority Borda. The Kemeny-Young and Schulze methods exhibit the strongest resistance to
random manipulability. Two variations of the majority judgment method, with different tie-
breaking rules, are compared for continuity. A new variation is proposed which minimizes
discontinuity.

A framework for social choice methods based on grades is presented. It is based on the
Balinski-Laraki framework, but doesn’t require aggregation functions to be strictly mono-
tone. By relaxing this restriction, strategy-proof aggregation functions can better handle a
polarized electorate, can give a societal grade closer to the input grades, and can partially
avoid certain voting paradoxes. A new cardinal voting method, called the linear median is
presented, and is shown to have several very valuable properties. Range voting, the ma-
jority judgment, and the linear median are also simulated to compare their manipulability

against that of the ordinal methods.
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Chapter 1

INTRODUCTION
1.1 History
Decision theory, or social choice, is the study of all mechanisms by which a group of people
can come to a collective decision from individual preferences. In traditional social choice,
the only input to the decision-making mechanism is each individual’s rank ordering of the
possible alternatives, and the output of any decision making mechanism is a “societal” rank
ordering meant to represent the aggregated wishes of the group.

An example of a well-known and straightforward social decision method is the Borda
Count [5]], where the decision among n alternatives is made by assigning n points to each
individual’s favorite alternative, n — 1 points to each person’s second favorite, etc., down to
1 point assigned to each person’s least favorite. The points for each alternative are summed
and the alternatives are put in descending order of the total number of points received. This
method was popularized in the late eighteenth century, by Jean-Charles, chevalier de Borda.

A contemporary of Borda, Marie Jean Antoine Nicolas de Caritat, marquis de Con-
dorcet, was of the opinion that the societal rank ordering should match the majority rule as
much as possible. That is, for every pair of alternatives, whichever alternative was preferred
by the most people should be preferred in the societal rank ordering. Condorcet was critical
of Borda’s method for going against the majority rule in many circumstances, but he also
noted that this criterion is not always able to be satisfied; there are cases where alternative
A is preferred to alternative B by a majority, B is preferred to C by a majority and C to A
by a majority. This situation is called Condorcet’s paradox. The Condorcet criterion for
social decision methods says that if there is one alternative that is preferred by a majority to
every other alternative, then it should be selected as the best alternative in the societal rank-

ing. Condorcet suggested a social decision method' consistent with this criterion?: Points

ISee [[7] and [16]

2 Also known as the Kemeny-Young method [10]]
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are awarded to all possible societal rankings in accordance with the number of people who
agree with each of the pairwise outcomes in the ranking. These points are summed and the
ranking with the highest score is declared the societal ranking.

Since the framework of social choice allows any social decision mechanism imaginable,
the space of possible mechanisms is rather large’. There are some notably degenerate
social decision functions. A constant social decision function would always yield the same
societal ranking regardless of what the individual preferences were. A dictatorship is a
social decision function that prefers one individual and always chooses his ranking of the

alternatives as the societal ranking.
1.2 Arrow’s Impossibility Theorem

Here are some standard criteria for evaluating social decision methods:

Impartiality to individuals - 1f the preferences of two individuals are exchanged, the

societal ranking should not change.

e Impartiality to alternatives - If two alternatives exchanged position in every individ-
ual’s preference order, the only change to the societal ranking should be those two

alternatives exchanging positions.

e Pairwise unanimity - For each pair of alternatives, if one alternative is preferred to

the other by every individual, then that must be true in the societal ranking as well.

e [ndependence of irrelevant alternatives - Which alternative of any pair is preferred in
the societal ranking must not change when any individual moves a third alternative
(not in the pair) to a different place in his ranking (leaving the rest of the ranking

unchanged).

The impartiality criteria are natural requirements for any system that is used in practice,

but many times are omitted in theory because they are overly restrictive. Pairwise una-

3Define .4/ as the set of all possible rankings of the alternatives. There are n! when only
strict rank orderings are considered, more if ties are allowed. The possible social decision
mechanisms are all functions from .4 to 4.
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nimity is a very weak condition which ensures the societal ranking has some relationship
to the individuals’ preferences. Any sensible social decision method will satisfy pairwise
unanimity. Independence of irrelevant alternatives (or ITA) is a very desirable criterion for
a social decision method; the societal decision between two alternatives should not change
merely when opinions shift about other alternatives.

Table [I.1]shows how well a selection of social decision methods satisfy these criteria.

Impartial to | Impartial to | Pairwise
Method individuals | alternatives | unanimous | ITA
Borda Y Y Y N
Condorcet Y Y Y N
Constant fn Y N N Y
Dictatorship N Y Y Y

Table 1.1: Social decision method criteria chart

Despite being extremely desirable, independence of irrelevant alternatives is extremely
difficult to satisfy: any social decision method that is pairwise unanimous and IIA must be

a dictatorship. This is Kenneth Arrow’s renowned impossibility theorem [[1].

Theorem 1. (Arrow) If a social choice method for three or more alternatives returns a
societal rank-ordering for every possible combination of input rank-orderings, and if it is

pairwise unanimous and independent of irrelevant alternatives, then it is a dictatorship.

Another important and well-studied criterion that is impossible to satisfy is that a social
decision method should not allow manipulation or strategic voting—that is, an individual
should not be able to cause the top-ranked alternative to switch to an alternative he prefers
by changing his ranking away from his honest one to something else. This is known as the

Gibbard-Satterthwaite theorem [9]] [[13]].

Theorem 2. (Gibbard-Satterthwaite) If a social choice method for three or more alterna-
tives is not a dictatorship and for every alternative there is some profile of rankings that

could cause that alternative to win, then there exists some profile where some individual



could, by submitting a vote that does not indicate his true preferences, alter the top-ranked

alternative to one he prefers more.
1.3 Organization of this dissertation

Part[|of this work examines the concepts of monotonicity and manipulability in well-known
social choice methods from several perspectives. Chapters [2] and [3] take place within the
traditional social choice framework, where each individual submits a ranking of the alter-
natives. In chapter [2| we explore the concept of monotonicity in this framework, which
generally means that no negative effects should come to a candidate when one or more
individuals move that candidate up in their rankings. Another type of monotonicity, for
rankings, is introduced. It is proved that Borda’s method and Condorcet’s method satisfy
different monotonicities and that it is impossible for any method to satisfy them both. In
chapter [3| we examine the manipulability of several social choice functions, including a
relatively new method, the majority Borda method[3l]. This method is expected to have
some strong manipulability-resistance properties, but it has not been widely studied. The
manipulability of the different methods is analyzed from a probability standpoint, with the
main original result being some Monte Carlo simulations which give concrete manipula-
bility scores for these methods. The majority Borda method does indeed fare well in some
circumstances, though Condorcet’s method fares the best in general. Chapter[d]examines an
alternative social choice system, based on individuals submitting grades or evaluations of
each alternative instead of ranking them. Some existing social choice methods within this
framework are approval voting, score voting, and the majority judgment. Several variations
of the majority judgment, including a proposed new variant, are analyzed for continuity.

In part [[I, we introduce a new framework for the analysis of social choice methods
based on grades. It is a variation of the Balinski-Laraki[4] framework, but relaxes one key
requirement and thus admits many more possible ways of aggregating individual grades
into a societal grade. In chapter [5] we provide a new characterization of all aggregation
functions that are resistant to strategic voting. A new method, called the linear median,

is introduced which has several very valuable aggregation properties. Chapter [6] explores



how to choose the aggregation function that will minimize the distance between the voter
input grades and the aggregated output grade. The linear median is shown to be the opti-
mal aggregation function for this purpose in certain circumstances. Chapter [7|extends this
analysis to other norms. It also examines which aggregation functions will minimize the
influence that a single voter can have on the election outcome. The linear median is shown
to be the unique aggregation function in its class that can minimize the influence of a sin-
gle voter, as measured with the uniform norm (L*). In chapter@ we examine the no-show
paradox and how it affects the majority judgment and the linear median. Additionally, three
of the social choice functions that are based on grading, including the linear median, are
examined and simulated to give concrete manipulability scores which are compared to the
ordinal functions computed in chapter 3]

In summary, part I} aims to provide a comprehensive analysis of a new social choice
framework. That analysis shows that the linear median and the majority judgment stand out
as the most useful, sensible, and viable of all cardinal social choice methods. We promote
further study of these methods and encourage their implementation in electoral situations

large and small.
1.4 Notations

For alternatives in the abstract, we will generally use upper-case letters A, B,C, etc. .

To indicate that one or more individuals prefer A to B to C, we will use the notation
A>=B>C.

To indicate individuals who are indifferent to A and B, we will indicate A ~ B. Two indi-

viduals who prefer A to B to C will be notated as
2:A>B>C.

To indicate that a social choice method gives a societal outcome preferring A to B to C, we

will use to subscripted relation >g, asin A g B g C.



When we refer to “Condorcet’s method” we are referring to the social choice method
generally known as Kemeny-Young, in accordance with the deduction in [16] that this was
probably the method Condorcet had in mind in his writings.

In some places, where it seems more natural, we will refer specifically to the context of
elections. That is, we will refer to alternatives as candidates and to individuals as voters.

All results, however, apply to social choice situations in general, not merely to elections.



Part 1

MONOTONICITY AND MANIPULABILITY OF EXISTING SOCIAL CHOICE
METHODS



Chapter 2

MONOTONICITY IN TRADITIONAL SOCIAL CHOICE

One of the most basic criteria used to analyze social choice mechanisms is monotonicity.
It seems to be a basic tenet of fairness that when some voters move a candidate up in their
rankings, he should not be negatively affected. When a social choice method allows a
candidate to become worse off when they are ranked higher by some voters, the election
outcomes are never without doubt. Additionally, such methods are susceptible to some
of the most blatant forms of tactical voting, for there will be situations where voters are
tempted to rank candidates lower in order to help them.

In this chapter we examine several different monotonicity criteria. We then turn to an
idea of Peyton Young, that choosing a “best” societal ranking and choosing one “best”
alternative are not fully compatible. We expand on Young’s results with some principles
of monotonicity. The results in this section were published as a joint work with Michel

Balinski and Rida Laraki in November 2009[2].

2.1 Monotonicities

Winner-monotonicity

The most common monotonicity considered in the literature is winner-monotonicity, which
means that the winning candidate should still win if they were to be ranked higher by
some of the voters (with no other changes to the voter preference profile). Borda’s method
clearly satisfies winner-monotonicity, because moving the winner up in some rankings will
increase his Borda score and will decrease or leave unchanged the scores of the other can-
didates, meaning that no candidate can overtake the winning candidate when he is moved
up in ranking by some voters. Similarly, Condorcet’s method is winner-monotone because
moving the winner up in one voter’s ranking will add exactly one point to every ranking
which ranks that candidate over the candidate who was moved down and will subtract one

point from every other ranking. In particular, every ranking which ranks that candidate first



will have its points increased by one, and no ranking will increase in points by more than
one, so no ranking can overtake the winning ranking when the winner is moved up by one
or more voters.

An example of a method that can fail winner-monotonicity is instant runoff voting. In
a three winner race, for example, there are times when the winner being moved up in some
voters’ rankings will change which candidate is eliminated first and allow the former winner

to be defeated by the other candidate. Here is a specific example:
8:A~B>C 2:B~A>-C 5:B~C>A 6:C~A>B.

C is eliminated in the first round and A defeats B by a score of 14 to 7 in the final round.
If the two B - A > C voters move A up so they become A > B - C voters, then we have the

following profile:
10:A>~B>~C 5:B~C>~A 6:C~A>B

where B is eliminated in the first round and then C defeats A by a score of 11 to 10 in the
final round. Thus, with instant runoff voting, a candidate can lose the election by being

ranked higher by some voters.

Choice-monotonicity

A more thorough notion of monotonicity is that moving any candidate up in ranking should
never cause that candidate to lose to someone they defeated before they were moved up.
Formally, we define choice-monotonicity to mean that if a profile of individual preferences
yields a societal ranking with alternative A preferred to alternative B or A tied with B and
then alternative A is moved to a higher rank or B is moved to a lower rank by one per-
son, the societal ranking should (strictly) prefer A to B. Choice-monotonicity can be seen
as a generalization of winner-monotonicity in that winner-monotonicity only requires this
condition to hold for the winning candidate in the original profile. Choice-monotonicity
requires that is be true for every candidate.

Borda’s method also satisfies choice-monotonicity. Again, this is because moving a

candidate up in ranking will strictly increase his Borda points, while decreasing or leaving
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unaltered the points of every other candidate. Condorcet’s method, on the other hand, is not
choice-monotone. The following profile, &, shows the failure of Condorcet’s method to

satisfy choice-monotonicity:

4:A~B>~C~D>FE
4:B~E>~C>=A>D
2:D-E>~C>=A>B
1:D-C-E>A>B

1:D-FE>A>C>B.

Condorcet’s method will give a two-way tie for first between the societal rankings

A>=sB>sC>sD>gE and B>gE>5C>5A>=gD,

so we can create profile &2 from & by having one of the voters who ranked C immediately
above A swap them. This causes Condorcet’s method to give a unique best societal ranking
of A =g B 5 C >5 D =g E. We can also create profile &2, from £ by having the one voter
who ranked A immediately above C swap them, which yields a unique best societal ranking
of B>s E =5 C >=g A >=g D. Thus, moving from & to &, is accomplished by having two
voters move C up one rank, which causes C to become defeated by E in the societal ranking

where C had defeated E before.

Rank-monotonicity

A different way to generalize winner-monotonicity is to require that when the winner is
moved up in rank by some voters, the entire societal ranking should stay the same, not just
the winner. This is the definition of rank-monotonicity. Formally, a social choice method
is rank-monotone if whenever & is a profile that causes candidate A to win and & is
identical to & except that A is moved up in some voters’ rankings, then &7 should give
the same societal ranking as .

Unlike choice-monotonicity, it will be fairly rare for a social choice method to satisfy
rank-monotonicity. Borda’s method fails it, because raising the winner in some voters’

rankings will decrease the score of any candidates who are moved down in the process, and
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this will commonly cause a re-ordering of the non-winners in the societal ranking. In the
following profile

3:A-B>C 2:C>B>A,

the candidates A, B, and C receive 11, 10, and 9 Borda points respectively, giving the
societal ranking A >g5 B ¢ C. If the two voters who rank A last were to raise him one
position, this would reward A with two Borda points at the expense of B, giving a societal
outcome of A =g C =g B

Condorcet’s method, however, meets this criterion for the same reason that it satisfies
winner-monotonicity: it assigns points to the various societal rankings, and moving the
winner up in one voter’s rankings will add one point to the winning societal ranking and
can not add more than one points to any other ranking, so the winning societal ranking must

remain the same.

Rank-order-monotonicity

Yet, another form of monotonicity is rank-order-monotonicity, which means that no candi-
date will move down in the societal ranking when he is moved up in the rankings of one or
more voters. This is another criterion, like choice-monotonicity, that is identical to winner-
monotonicity when it is applied only to the winner. In fact, rank-monotonicity is between
choice-monotonicity and winner monotonicity. Any method that is choice-monotone is
necessarily rank-order-monotone, and any method that is rank-order-monotone is necessar-
ily winner-monotone. Although it appears to have more to do with ranking than pairwise
comparison, rank-order-monotonicity is more closely related to choice-monotonicity than
rank-monotonicity.

Borda’s method satisfies rank-order-monotonicity, as it is choice-monotone, but Con-

dorcet’s method does not. Here is a counterexample which is very similar to the counterex-
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ample for choice-monotonicity. It uses six candidates instead of five:

4:A-B>~C~D>E~F
4:B-E>~F>~C>A~D
1:F>~D~E>~C>~A>B
1:F>~D>~A>~C>~E>B
1:D~C~E>~A>~F>B

1:D~E>F>~C>A>B.

Condorcet’s method will give a two-way tie for first between

A>-sB>sC>sD>sE~sF and B>sE>sF >=5C>5A>=sD,

so we construct a pair of profiles &7, by having one voter move A above C and £ by having
one voter move C above A. Then this pair illustrates a failure of rank-order-monotonicity
failure because two voters moving C above A will cause C to move from third to fourth in
the societal ranking.

In [2]], we prove that for Condorcet’s method, it is impossible to find a counterexample
for rank-order-monotonicity with five or fewer candidates. We also prove that finding a
counterexample for choice-monotonicity in Condorcet’s method is impossible with four or

fewer candidates.
2.2 Incompatibility

It was observed by Peyton Young [[15] that choosing a “best” societal ranking of all al-
ternatives and choosing one “best” alternative are distinct, and not necessarily compatible,
goals. For instance, an algorithm to produce a ranking of sports teams might reasonably
choose the one that minimizes the number of upsets in the past season. Such an algorithm
would not necessarily rank first the team that had the highest probability of defeating all
other teams. In a probabilistic sense the “best” alternative that comes from the preferences
of the individuals may be different than the top-ranked alternative in the “best” ranking that

comes from those same preferences. Young showed that Condorcet’s method was the opti-
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mal method for choosing a societal ranking and Borda’s method was optimal for choosing
one alternative.

From the definitions above, we can examine Young’s observation from a monotonicity
perspective. If a social decision method is good for selecting a societal ranking, then it
should be rank-monotone, because it seems that the societal ranking should be stable if
some voters decide to move the winner up. Choice-monotonicity is desirable for a choosing
a societal winner because it ensures relatively stable pairwise outcomes. As noted above
Borda’s method is choice- but not rank-monotone and that Condorcet’s method is rank- but

not choice-monotone.

Theorem 3. (Balinski, Jennings, Laraki) There is no social choice method that is both rank-
and choice-monotone that is also impartial to individuals and alternatives and respects

unanimity (for at least three alternatives and at least two individuals).

Proof. Let 2k + i equal the number of voters, with i either O or 1, and & be the profile

kiA>=B>C>A;>--->-A, k:B>~C>A=A A,

i:Ax=B=C>A| -~ A,.
By impartiality, the profile
k:B=A>-C=A;=--->A, k:B=C>A=A A,
itAxB~=C>A1 > -~ A,

implies A ~g C. The profile & is obtained when the first k voters move A above B. By
choice-monotonicity, profile & must imply A >s C.

Similarly, the profile

ki:A>=B>C>A| - > A, ki:B=A>C>A| - > A,

ItAx~B=C+A; > --->A,
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implies A /g B and changes into profile & when the second group of voters move C above
A. Thus the profile & must imply B >g A. Unanimity now determines the complete out-
come for Ztobe B>-gA >=sC =gA| =5+ = A,.

By rank-monotonicity, the profile

k:B-A>-CxA~--->A, k:B-C>A>A>~--->A,

ItAxB~=C=A1 = =A,,

must imply the same outcome as &, including A > C, which contradicts the earlier impar-

tiality result (A ~g C) for this profile. ]

In [2], we give examples of social choice methods that are rank- and choice-monotone
and respect unanimity if one is willing to give up either impartiality towards voters or

impartiality towards candidates.
2.3 Conclusion

Monotonicity is one of the most basic properties of social choice systems that can be stud-
ied. Methods that fail the most basic type of monotonicity, which is winner-monotonicity,
are manipulable and can be difficult to study mathematically. There are many possible ways
to extend winner-monotonicity into different types of monotonicity that can be analyzed.
Borda’s method and Condorcet’s method satisfy different monotonicities. That Condorcet’s
method satisfies rank-monotonicity and Borda’s method fails it, while Borda’s method but
not Condorcet’s satisfies choice-monotonicity, gives us further insight into Peyton Young’s
result that Condorcet’s method is more appropriate for choosing a societal ranking and

Borda’s method is more appropriate for choosing one winner.
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Chapter 3

MANIPULATION IN TRADITIONAL SOCIAL CHOICE

Significant complication is added to the analysis of social choice methods by the consider-
ation of strategy. Many social choice methods which work well with voters that are honest
can fail miserably if participants try to manipulate the results. For situations as consequen-
tial as political elections, we must assume that some voters will do everything within their
power to affect the outcome. The tools of game theory can be of some help in studying strat-
egy in social choice methods, but their application is limited where there is collaboration
and elections tend to be highly collaborative environments. In addition, voters often have
incomplete and outdated information, and it is unclear that elections in real-life situations
ever reach equilibrium.

In an ideal social choice method, no voter would ever be able to benefit from submitting
a rank-ordering of the candidates that was not honest. Then, without any incentive to be
dishonest, voters could be instructed to vote honestly. After the election, all participants
could trust that no group of voters took unfair advantage of the election. The voter opinions
expressed could be assumed to be honest, allowing further analysis to be performed on the
election results as well as providing sample data for understanding the statstical properties
of an honest voter profile. Unfortunately, no such system exists. As indicated in chapter|[I}
the Gibbard-Satterthwaite theorem proved that there will always be cases where a voter can
benefit by submitting a dishonest vote. Additionally, a social choice method which fails any
of the monotonicities in the previous chapter, but especially if it fails winner-monotonicity,
will be susceptible in some way to rewarding voters who vote dishonestly.

Even if the ideal social choice method that perfectly incentivized honest voting existed,
there is another form of manipulation that would need to be considered: strategic nom-
ination. Since Arrow’s impossibility theorem proves that the outcome of the election can
depend on which candidates are running, even those who have very little chance of winning,

there will always be an incentive for political parties and other powerful groups to influence
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whether or not certain candidates enter the race or drop out in an attempt to maximize their
advantage, but a good voting system would minimize this effect to the maximum degree

possible.
3.1 Random manipulability

Though it is an extremely important topic to study, manipulability has proven very difficult
to actually quantify. Usually it has been studied using criteria, and social choice methods
are evaluated as either satisfying a given criterion or not. Because of the variety of im-
possibility theorems that indicate the futility of trying to satisfy all theoretical criteria at
once, it seems that it would be more useful to have a probabilistic model that indicated how
often each social decision method was susceptible to different types of manipulability. The
primary difficulty with a probabilistic model, however, is finding the right distribution over
which to sum. Even when selecting the honest preferences of many voters, it is not clear
which probability distribution should be used to select the preferences. A common way
to solve this problem is to model one, two, or n-dimensional issue spaces with Euclidean
geometries, randomly placing the candidates and the voters within the space and choosing
a suitable norm to compute the rank-ordering for each voter from the distances to the can-
didates. As useful as these models are, they still seem unrealistic in many ways, and leave
questions about the applicability of the results to real-life elections.

Once the honest profiles are selected, they should be adjusted to account for voter strat-
egy. Especially when trying to quantify manipulability, one should be careful to simulate
voters who are making an attempt to act strategically, but this brings with it a whole new
set of complications. Voters have imperfect information. Some voters will choose not to
strategize, and others will use suboptimal strategies. Groups of voters will collude even
when it may be against their best interest, and they can consider both the past and the future
when making their decisions about the current election. As a result of these difficulties, it
becomes almost impossible to truly simulate strategic voters in a way that will be widely
accepted as neutral and reasonable.

A recent paper by Friedgut, Kalai, and Nisan [8]] takes a completely different approach.

16



It ignores all of these difficulties, not even attempting to simulate realistic honest prefer-
ences, and considers only the uniform distribution. Their measure of manipulability, which
we call here random manipulability, calculates how likely it is that a voter in a random
voter profile (chosen uniformly over all possible voter profiles), by changing his preference
to a random dishonest ranking, will effect a profitable manipulation—that is, will change
the winner of the election to someone he prefers more (in terms of his original ranking,
which is assumed to be his honest ranking). It is unclear whether the authors intended their
manipulability measure to be used in practice or only theoretically, but we use it later in
this chapter to make actual empirical measurements of several different methods. That this
manipulability measure makes no attempt to divine a proper probability distribution for the
voting profiles may be seen as a strength instead of a weakness; if it is not realistic, at least
it is not contrived. It won’t tell us everything about the various social choice methods’
manipulability, but surely it tells us something.

The main result of [§] is that elections can be manipulated “often”. Regardless of the
social choice method used, there will be a voter who can manipulate the election with

probability at least on the order of 1/n.
3.2 Voter manipulability

We propose a companion measure to random manipulability called voter manipulability
which calculates how likely it is for a voter in a random profile (again chosen uniformly over
all possible voter profiles) to have any available rank-ordering to which he could change his
vote that would change the winner to one he prefers more. In other words, once an honest
voter profile is chosen, random manipulability is concerned with the probability that a se-
lected voter might profit by changing his vote randomly, and voter manipulability measures
the probability that he might profit by carefully choosing to which rank-ordering he should
change his vote. For a specific number of voters and candidates the voter manipulability
score of a method will always be greater than or equal to its random manipulability score.
The ratio between the two manipulability scores can tell us something about how careful

a voter must be when trying to manipulate, whether there are many available dishonest
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votes that will benefit the voter or whether he needs to be very selective in choosing his
manipulation.

There are several ways that these manipulability measures are imperfect. As mentioned
above, they assume that the voters’ honest preferences come from a uniform distribution,
which is not the case for most real-life situations, and they assume that all voters except one
maintain their honesty while only one voter changes his rank-order to a dishonest one. In
addition, voter manipulability assumes that the manipulative voter has perfect knowledge of
the rest of the voters’ preferences and is allowed to act on that information. In spite of these
shortcomings, we still feel that these two manipulability metrics have value, especially for

their simplicity and transparency.
3.3 The Borda Majority method

In a forthcoming book, Balinski and Laraki suggest a social decision method called the
Borda majority method [3]]. The alternatives are assigned collections of points according
to their positions in each individual’s rank-ordering, as they are with the traditional Borda
Count, but instead of summing those points, they are analyzed using the majority judgment
method, where the sets are ordered by their median grades'. The tie-breaking process, if
there are ties, is discussed in chapter ]

The median function is an example of a function that is strategy-proof, meaning that any
voter who submitted a grade higher than the societal output grade would not be able to raise
the societal grade if he could alter his submitted grade. Nor could any voter who submitted a
grade lower than the societal output grade lower the societal grade by altering his submitted
grade. This property is the basis for several valuable strategy-resistance properties of the
majority judgment, though it does not imply that the majority judgment is perfectly resistant
to strategy. Further, any strategy-resistance that the majority judgment does have will not
necessarily not transfer directly to the Borda majority method. Since the Borda majority

method is based on rank orderings, it is not possible to raise one candidate’s point value

UIf the number of grades is even, however, the lower middlemost value is used.
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without lowering another. Still, it is theorized[3]] that the Borda majority method will likely

inherit some resistance to strategic voting. We desired to test this hypothesis.
3.4  Simulations

In order to collect data about the manipulability of various methods, a Monte Carlo simula-
tion was performed. For each trial, each voter’s rank ordering was chosen at random from
the set of possible rank orders. The winner was computed for each social choice method.
Any ties were broken lexicographically, so each method produced one unique, strict rank
ordering.

Then, one voter was chosen and his vote was changed to another rank order at ran-
dom. For each method, it was recorded whether or not this changed the winner to someone
the voter liked better, in terms of his original rank order, for the random manipulabilibity
measurement.

Also, for the same voter profile and the same voter, all the other possible possible rank
orders were tried. For each method, it was recorded whether or not there was any rank order
that changed the winner to someone the voter preferred in his original ranking, for the voter
manipulability measurement.

Simulations were run for 3, 4, and 6 candidates and 10, 32, 100, 320, and 1000 voters.
Between sixty thousand and three million trials were run for each combination of candidates

and voters. The data is provided in appendix [A] and charts are shown in figure 3.1]
3.5 Conclusion

The most salient trend in this manipulability data is that the Condorcet methods, Schulze
and Kemeny-Young, consistently have the best scores for both random manipulability and
voter manipulability. It is also interesting to note that Borda’s method performs well with
respect to the random manipulability measure but fares poorly in voter manipulability. This
indicates that the susceptibility of Borda’s method to strategic voting depends heavily on
the amount of information that the voters have. Borda’s method should be considerably

more strategy-resistant in situations where voters truly have no idea which candidates are
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Figure 3.1: Manipulability of different social choice methods
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popular and how others are voting than it is when voters are somewhat informed of who the
front-runners are.

Majority Borda, the new method invented by Balinski and Laraki, seems to improve in
strategy-resistance relative to other methods as the number of candidates increases. Indeed,
it is the only one of the methods benchmarked which is competitive with the Condorcet
methods in voter manipulability for 6 candidates and 1000 voters. It appears that more than
four candidates are needed for the strategy-resistance properties of the median to have a

significant effect.

21



Chapter 4

SOCIAL CHOICE BASED ON GRADING
Since 1978, social choice theorists have also studied mechanisms that are outside of the
traditional framework. They don’t limit the individual inputs to a rank ordering of the
alternatives. Instead, they allow each individual to submit a grade for each alternative.
Each alternative’s set of grades is then aggregated separately, so it is impossible for the

grades given to one alternative to affect another alternative’s final grade.
4.1 Existing methods

e Approval voting [6] - Each individual submits a binary grade for each alternative,
“approve” or “disapprove”. Each alternative’s aggregate grade is the fraction of indi-

viduals who approve it.

e Range voting [14]] - Each individual submits a number from some pre-determined
real interval as a grade for each alternative. Each alternative’s aggregate grade is the

arithmetic mean of its grades.

e Majority-judgment [4] - Each individual submits a grade from a pre-determined fully-
ordered set (need not be numeric). Each alternative’s aggregate grade is the median
of its grades when the number of grades submitted is odd, and when the number of
grades submitted is even, it is the lower of the two middlemost values. This is number

is called the majority-grade.

Each of these methods respects unanimity: if one alternative is graded strictly higher
than another by all individuals, then it ends up with a higher aggregate grade. They are
also independent of irrelevant alternatives in the sense that one or more people changing
the grade of one alternative will affect neither the final grades nor the order of finish among
the other alternatives. None of them is a dictatorship. Thus, Arrow’s impossibility theorem

is avoided in each case.
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However, it is not entirely accurate to consider approval voting and range voting as pure
cardinal methods. Much of the existing literature on approval voting assumes a context of
ordinal voting, imagining the voter to have a preferred rank ordering of the candidates
and needing to choose how many candidates he should approve to maximize his expected
influence on the election outcome. If voters indeed behave this way, then it is possible for
the addition or deletion of candidates (and for candidates fading in and out of legitimacy)
to affect the voters’ evaluations of the other candidates, and thus for approval voting to fail
the IIA criterion. A similar complication occurs with range voting, where it is practically
universal to assume that every voter should focus mostly on electable candidates and should
re-scale their grades to utilize the full grading spectrum in order to avoid wasting voting
power. This also ruins independence of irrelevant alternatives because the evaluations of
all candidates may change when any candidate is added, deleted, or achieves perceived
legitimacy.

In contrast, the inventors of the majority judgment system devote considerable attention
to the importance of convincing the voters to evaluate the candidates independently.[3]]
While this ideal will probably never be fully achievable', it is the goal that we must aim for

if we desire a social choice method that is truly independent of irrelevant alternatives.
4.2 Arrow’s theorem and cardinal voting

It is instructive here to elaborate how these cardinal voting systems fit into the traditional
ordinal framework. Technically, if we consider a version of Arrow’s theorem that allows ties
in the inputs and outputs of the social decision functions, then approval voting falls under
the definition of a social decision function with a restricted domain. Each voter’s approved
set of candidates can be converted into a rank-order with two ranks: the approved candidates
are all tied, and are preferred to the non-approved candidates, who are also all tied. By
failing to meet the unrestricted domain criterion, approval voting can be simultaneously

pairwise unanimous, non-dictatorial, and independent of irrelevant alternatives.

IFor each voter, there is probably someone in the world regarded so highly (or poorly)
that were he to declare candidacy, the voter would adjust his other grades.
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Range voting and the majority judgment, on the other hand, can not be forced to satisfy
the traditional definition of a social decision function. Any voter preference profile from a
range voting or majority judgment ballot can be converted into a rank-ordered voter profile
if ties are allowed, but this mapping is not one-to-one, so a given rank-ordered voter profile
usually maps back to multiple different cardinal voter profiles. Since each one of these
cardinal profiles may have a different societal ranking outcome when resolved with a cardi-
nal voting method (range voting or the majority judgment), it is impossible to classify and
analyze these functions within the traditional social choice framework where each ordinal

voter profile must result in at most one societal ranking.
4.3 Majority judgment tie-breaking rules

The remainder of this chapter will be devoted to an analysis of the tie-breaking rule of the
majority-judgment. Balinski and Laraki suggest a tie-breaking rule to go with the majority-
judgment [3]]. In the case of ties, the majority-grade is removed from the set of grades (only
one instance of it is removed if there are multiple), and the majority-grade of the new set is
calculated. This is repeated until all ties are resolved.

This rule is sensible whether there are few individuals or many, but if there are many
individuals then it can be characterized more efficiently. For grades a = (ay,...,ay), let
o/(a) be the fraction of grades strictly greater than the majority-grade and 3(a) be the
fraction of grades strictly less than the majority-grade. Define

o(a), ifoa(a)>p(a)
n(a) =
—B(a), if a(a) <pB(a).
For two alternatives with the same majority-grade, ties are broken in favor of the one with
the greater 7y value. (If the ¥ values were the same, further tie breaking rounds would be
necessary, but with many individuals, such ties are very rare.) Y is shown in figure @.1]

David Gale suggested an alternative tie-breaking rule [11]],

n(a) = a(a) - pla),
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Figure 4.1: Standard tie-breaking rule for majority judgment

and we suggest a third possible tie-breaking rule,

@508 - al@)

71 is shown in[4.2]and 7 is shown in

Y% seems the least susceptible to strategic manipulation, since almost everywhere it
is locally constant with respect to either & or . Its major shortcoming seems to be it’s
discontinuity at & = 3. Table[d.1|shows an example of five candidates with the same median
grade where the societal ranking is A =g B =5 C > D >g E, but if one voter changes his
grade for A from above the median grade to below it, then A will fall past the other four
candidates with their widely varying 7y scores to the bottom of the societal ranking.

If we desire a continuous tie-breaking rule, then at first, 7, seems better in this regard,
but y; exhibits discontinuity where there is a transition to a higher or lower majority-grade

(see figure[4.4). Table #.2] shows an example where a candidate can rise or fall past several
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Figure 4.2: Gale’s tie-breaking rule for majority judgment

candidates at once with the change of one voter’s grade (moving between profile A and
A’). In order to be continuous at the interface between grades, a tie-breaking rule must
achieve 0.5 when a equals 0.5 and must approach —0.5 as 3 approaches 0.5. ¥ satisfies
this requirement, and it is shown in figure that despite the continuity at a = 3, }p is

continuous at the transition between grades (the transition between the solid and dashed

lines).
Candidate | Votes above median | Votes below median Y W)
A 41 40 0.41 | 0.026
B 30 20 0.30 | 0.100
C 12 7 0.12 | 0.031
D 7 12 -0.12 | -0.031
E 20 30 -0.30 | -0.100
A 40 41 -0.41 | -0.026

Table 4.1: Discontinuity of ¥ for five candidates with the same median grade (100 voters)
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Figure 4.3: Suggested tie-breaking rule for majority judgment

Grade distribution Tie-breaking rule
Candidate | Excellent | Good | Fair | Poor | Maj. grade " )
A 40 11 9 40 Good -0.09 -0.409
B 35 20 11 34 Good -0.10 -0.250
C 29 25 13 33 Good -0.17 -0.340
D 35 12 26 27 Fair 0.20 0.385
E 24 21 26 29 Fair 0.16 0.308
A 40 10 10 40 Fair 0.10 0.500

Table 4.2: Discontinuity of y; for five candidates (100 voters)

72, on the other hand, exhibits continuity on the entire interior of the domain as well as
at the transitions between grades (see figure [4.6). The only point of discontinuity for 7, is
where 1 — o — 8 is zero. But o < 0.5 and 8 < 0.5, so this situation is outside the set of
achievable o and f8 values, though it is on the boundary. Indeed, 1 — o — 8 indicates the

fraction of grades that are identical to the majority-grade, which can never be zero because,
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Figure 4.4: Discontinuity of Gale’s rule at the transition to different grades (the transition
between the solid-line area and the dashed-line areas)

by construction, the majority-grade (the median) comes from the set of input grades. And
since, ¢ < 1—aand B < 1—, it follows that |oc — | < 1— ¢ — B, so ¥, is indeed bounded
between —0.5 and 0.5 on the entire domain. We record these observations as Theorem [4]

below.

Theorem 4. (Jennings) Yy is continuous at the transition between grades, but not on the
line o = B.

Y1 is continuous on the line o = B, but not at the transition between grades.

Y, is continuous on the interior of the domain and at the transition between grades, but

has a discontuity at o = 3 = 0.5.

In fact, since tie-breaking functions are really only relevant when the number of voters

is large and the set of grades is small and discrete, the probability that any of the grades will
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Figure 4.5: Continuity of the standard rule at the grade transitions (the interface between
the solid-line area and dashed-line areas). The discontinuity at o = 8 remains, however.

be awarded zero times is negligible, so it does no great harm to bound the domain away
from this point of discontinuity. Tables and each have a column indicating the 7,
tie-breaking value for two problematic voter profiles introduced above. In both of these
specific examples, the continuous tie-breaking rule would re-order the existing winners
so that profiles A and A’ are adjacent in the societal ordering. Thus, with the continuous
tie-breaking rule, niether of these one-voter changes would change the societal candidate
ordering at all.

Both of the examples above involved a highly polarizing candidate who had lots of
extreme grades and relatively few middling grades leapfrogging multiple other candidates
who had fewer extreme grades and lots of middling grades. It seems that this is the most
problematic scenario. Although 9» is continuous, it is still very steep near & = § = 0.5 (the

most polarized distribution of grades). By making the polarization even more extreme than
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Figure 4.6: Continuity of the suggested rule in the interior and at the transitions

the two examples above, it is possible to concoct scenarios with 9, where one polarizing
candidate jumps over multiple non-polarizing candidates with a very small change in his

grade distribution.
4.4 Conclusion

The study of social choice functions based on voter grades instead of voter rank-orderings
is a promising field of research. These functions allow social decisions that are pairwise
unanimous, non-dictatorial, and independent of irrelevant alternatives, which is not possible
in the traditional social choice framework. Three promising such methods are approval
voting, range voting, and the majority judgment.

An analysis of the majority judgment tie-breaking rule shows that it is not continuous.
While this, of itself, is not of great concern since we are always dealing with a finite number

of voters and a discretization of the tie-breaking function anyways, an example was given
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where a one-voter change in the profile can cause a candidate to fall several rankings in the
societal output, past candidates that had tie-breaking scores that were some distance apart.
An alternative rule, suggested by Gale, has a different discontinuity and a different example
of a one-voter change to a profile which changes the societal output significantly was given
for this rule.

A third rule was presented which is continuous everywhere and behaves better in the
two example cases above. It is not possible, however, to fully eliminate the problem of large
changes in the societal output ranking from small changes in the grade distribution. As a
result, it is unclear how significant is the benefit to using this continuous tie-breaking rule,
especially since it requires sacrificing one of the advantages of the original rule: that it is
locally constant almost everywhere with respect to either o or 8, which definitely decreases

its manipulability.
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Part 1T

WEAK MONOTONICITY AND THE LINEAR MEDIAN
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Chapter 5

AGGREGATION FUNCTIONS AND STRATEGIC MEDIANS
We desire to explore cardinal voting methods in general. Any cardinal voting method that
seeks independence of irrelevant alternatives should be based on a process that generates
a societal grade for a given alternative based only on the grades given to that alternative,
not on the grades given to any of the other alternatives. In this chapter, we formalize this
concept in the form of aggregation functions. We also introduce the concept of strategy-
proofness, whereby a cardinal voting method can avoid rewarding voter dishonesty. We
characterize all possible strategy-proof aggregation functions. An aggregation function
called the linear median is presented as an example of strategy-proofness. In later chap-
ters, the linear median will be shown to have several important qualities and ultimately it

emerges as a very valuable cardinal voting method.
5.1 Aggregation functions

A function, f from R™ to R is an aggregation function if it satisfies the following three

properties:
e Unanimity - For all r, f(r,...,r) =r.
e Anonymity - Permuting the entries of the input vector preserves the value of f.
e Monotonicity - If s; > r; for all i, then f(5) > (7).

Balinski and Laraki define an aggregation function similarly, but include a condition
of strict monotonicity which requires that when all components of the input vector are in-
creased, the output of f must strictly increase. [4] In this work, we explore the space of
social choice functions that are based on aggregation functions that are not strictly mono-

tone.
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5.2 The linear median

Define the linear median, .# : [0,1]" — [0,1], by

///(al,...,an):sup{ye [0’1]'#(611‘112)0 Zy}.

The function .# gives the largest value y such that the proportion of the input arguments
that are at least y is greater than or equal to y. This function is motivated by considering
a game where n actors submit approval votes with each actor attempting to make the out-
put equal to some personal target grade. The outcome indicated by .# (ay,...,a,), where
ai,...,a, are the personal target grades of the actors, is a Nash equilibrium for this game.

In fact, the function .# is strategy-proof: no actor can benefit (bring the output closer to
his target grade) by lying about his target grade. If the actors know that the grades given will
be aggregated with ., then all actors responding honestly (revealing their target grade) is

a Nash equilibrium of pure strategies.
5.3 Strategic medians

Balinski and Laraki proved [3] that the only strategy-proof strictly-monotone aggregation
functions are the order statistics (the functions that return, respectively, the maximum argu-
ment, the second-highest argument, the third-highest argument, etc., down to the minimum
argument). If the strict monotonicity condition is omitted, then there is a larger class of
strategy-proof aggregation functions, including the linear median, ./, that are available.

A function, f: [0,R]" — [0,R)], is a strategic median if there exists an increasing function

g:[0,R] — [0,1] with g(x) > 0 for x > 0 and

0 =sop{y e 0.R| =2 > ) |

n

We call g the grading curve (or grading function) of f. A fixed grading curve will generate
a family of strategic medians, one for each n.

A strategic median based on grading function g will give the largest value of y such that
the proportion of the input arguments that are at least y is greater than or equal to g(). The

order statistics are strategic medians with constant grading curves.
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5.4 Characterizing strategy-proof aggregation-functions

Theorem 5. (Jennings) All strategic medians are aggregation functions.

Proof. Let f be a strategic median.

(anonymity) f is anonymous because the formulation

09 =sup{ye 0.8] "2 > )}

is a function of #(x; > y), which is anonymous.

(unanimity) Let z in [0, R], define z = (z,z,...,z). and consider f(z). Since for every y

with y > z, @ =0< g(y) and for all y < z, @ = 1> g(y), it follows that we have
£(2) = sup([0,7]) = =
(monotonicity) Let r = (ry,...,rj,...,r,) and ¥’ = (r1,...,s,...,r,), and suppose that s

is strictly greater than r;. Then,
#(ri > y) <#(r; >

y
{ye [07R]‘#(nzy) zg(y)} C {ye [O,R}‘#(F’{fy) Zg(y)}
|
)

sup {y € [O,R]‘#(rify) >g(y) p <sup {y € [O,R]'#(F’/’nzy) > g(y)}

Lemma 6. (Jennings) Let f be a strategic median. Let r,s € [0,R]" differ only in dimension

i. If f(r) is outside of the interval between r; and s;, then f(r) = f(s).

Proof. For x in [0,R]", define A, : [0,R] — [0,1] by hy(y) = #xzy) Thep

f(x) = sup{hy > g}.

We note that 4, and h; differ only on the interval between r; and s; (closed on the right).
For convenience, we name this interval (m,M].

If f(r) < m, then m > sup{h, > g}, so h,(m) < g(m). hy(m) = h,(m) < g(m), so [m,R]
is disjoint from {h, > g} and {h; > g}. Since h, and h; are identical on [0,m), it follows
that {, > g} = {hs > g} and f(r) = f(s).
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If f(r) > M, then choose M < x < f(r). x < sup{h, > g}, so h,(x) > g(x). We have
hs(x) = hy(x) > g(x), so [0,M] is a subset of both {h, > g} and {h; > g}. Since h, and h;
are identical on (M, R], it follows that {h, > g} = {h; > g} and f(r) = f(s). O

Theorem 7. (Jennings) The strategic medians are strategy-proof.

Proof. Let f be a strategic median. Let in [0,R]" and jin 1,...,n. Suppose r; > f(r). Let
s:(rl,...,rj,l,sj,rjﬂ,...,rn).

If 5; < r; then monotonicity of f gives f(s) < f(r). If s; > r; > f(r), then lemma 6] gives

fs) = f(r). O

Lemma 8. (Jennings) Let f be a strategy-proof aggregation function. Let r,s € [0, R]" differ

only in dimension i. If f(r) is outside of the interval between r; and s;, then it is true that

f(r) = f(s).

Proof. Suppose f(r) is outside of the interval between r; and s;.

Case (i): (r; < s;) By monotonicity, f(r) < f(s). If f(r) < r;, then by the definition of
strategy-proof, f(s) < f(r). If f(r) > s;, then s; < f(s) and by the definition of strategy-
proof, f(r) = f(s).

Case (ii): (r; > s;) By monotonicity, f(r) > f(s). If f(r) <s;, then f(s) < s; and by
the definition of strategy-proof, f(r) < f(s). If f(r) > r;, then by the definition of strategy-
proof, f(s) = f(r).

We conclude that f(r) = f(s). O

Lemma 9. (Jennings) Let f be a strategic median or a strategy-proof aggregation function.

If r;s € [0, R]" differ only in dimension i, then |f(s) — f(r)| < |si —ril.

Proof. By lemmas [6] and [8] if f(r) or f(s) is outside of the interval between r; and s;,
then f(r) = f(s), so f(s) and f(r) can only differ if they are both within this interval. We

conclude that |f(s) — f(r)| < |s; —ri]- O
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Theorem 10. (Jennings) If f is a strategic median or a strategy-proof aggregation function,

then f is continuous.

Proof. Let & > 0. Choose r,s in [0,R]" such that [r; —s;| < £.

‘f(r)—f(SN < Z|f(s17'°'7Si717ri)"'arn)_f(slv'"7siari+1a"')rn)‘
i=1

n
< Z |ri—si|  (by lemmal[J))
i=1
€
<--n=ge. [
n

Lemma 11. (Jennings) Let f be a strategy-proof aggregation function. Let r in [0,R]" and

jinl,...,n. Suppose rj > f(r). Forsjin [f(r),R],

Flris o orjm1,8j, jg1, - ) = f(r).

Proof. For s; in (f(r),R], this is immediate from lemma (8] The conclusion for s; = f(r)

follows from continuity of strategy-proof aggregation functions. 0

For any grading curve g and n > 0, we define the grading values of g to be the n — 1
real numbers ¢; = supg~' ([0, £]) fori = 1,...,n — 1. Then we can prove that the output of
f¢ 1s the same as that given by computing the median of the n voters’ grades combined with

these n — 1 grading values. For notational convenience, we define ofg = —oo and @, = +co.

Lemma 12. (Jennings) Let n > 0. Let g be a grading curve and f, be the strategic median
based on g. Let y,...,Q,, be the grading values of g as defined above. Then for every
input vector (xi,...,X,), the output of f, is governed by one of the following two rules:

(I) If there is i in 1,...,n— 1 such that #(x; < ;) < n—i and #(x; > o;) < i, then
folx) = 04

(Il) If there isiin 1,...,n and jin 0,...,n— 1 such that x; is strictly between a; and

Ojy1, # < xi) <n—1—j, and #(x; > x;) < j, then fq(x) = x;.
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Proof. (1) Suppose there is iin 1,...,n— 1 with #(x; < o) <n—iand #(x; > o) <. For

any s < o,
#g >s) _ #g > o)
n n

v

> —>g(s),

SHR

s0 fg(x) > oy. For any 1 > o,

#lu >1) _ #lu > o) <ic g(t),

n n n

IA

s0 fo(x) < a;.
(II) Suppose there is iin 1,...,n and jin O,...,n — 1 such that o; < x; < @11, and
#(xe <x;) <n—1—j,and #(x, > x;) < j. Since x; < ¢j;1, we have g(x;) < % and

#(x > x;) S j+1

> .
n n —g('xl)7
s0 fg(x) > x;. For any ¢ > x;,
S . .
#u >1) < #(xe > xi) < o,
n n n

50 fg(x) < x;.
(IIT) It remains to be shown that these two cases are exhaustive. Let x be given. For

i=0,...,n—1, wedefine C(i) = #(xx < ay1) +i+ 1. Let
j=min{i €0,...,n—1|C(i) > n}.

(The set is non-empty because C(n— 1) =#(xx < @) +n=n+n=2n.)

If #(xx < 0tj1) +j < n, then #(x, < atj1) <n—jso#(xe < otjr1) <n—j—1. Also,
by the definition of j, #(xx < ajy1)+j+1 > nso #(xx > ;1) < j+ 1. This satisfies the
conditions for case (I) above (withi= j+1).

On the other hand, if #(xx < aj+1)+ j > n, then #(x; > ;1) < j. We choose i so that
when x1,...,x, are put in ascending order, x; is in position n — j. Then #(x; < x;) >n—j
and #(xx > x;) > j+ 1, which is equivalent to #(x; > x;) < jand #(x; <x;) <n—j—1.
Since j is the smallest number with C(j) > n, it follows that n > C(j — 1) = #(x; < oj) + .
Equivalently, #(x; < o;) < n— j. This means that #(x; < a;) < #(x; < x;) and also that
#(xx > ajy1) < #(xx > x;), from which it follows that a;; < x; < ;1. This satisfies the

conditions for case (II) above. ]
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In [12], Hervé Moulin proved that any strategy-proof aggregation function is equivalent
to calculating the median of the » input arguments together with n — 1 constants. The above
lemma confirms that our characterization, the strategic medians, agrees with his. Although
the other half of our characterization is redundant with Moulin’s result, it is re-proved here

(in our notation) because of its significance.
Theorem 13. (Moulin) Any strategy-proof aggregation function is a strategic median.

Proof. Let f be a strategy-proof aggregation function.
Define g : [0,R] — [0, 1] by
01 y= 0

g(y) =
min{@ X € f_l(y)}, otherwise.

(Because of unanimity, f~!(y) contains at least one element, (y,y,...,y).)
First, we show that g is increasing. Let 0 <y <z <R.
Let p=n-g(z) = min {#(x; > z) :x € f!(z)}. Choose x in [0,R]" with f(x) =z and

#(x; > z) = p. By applying lemmas [§|and [11] we can turn this into

f(zj"'7Z70,...70) :Z
N—— ——
p n—p
By monotonicity and unanimity, we know that f(y,...,y,0,...,0) <y. If it were true
e~ ——

p n—p
that f(y,...,y,0,...,0) was less than y, repeated application of lemmawould give
——— ——

P n—p

F(zees2,0,..,0) = f(3,...,7,0,...,0)
—— e~

and we would have

P n—p
a contradiction. Thus, f(y,...,y,0,...,0) =y.
—— N —
P n—p

This implies that p is in {#(x; >y) :x € f~'(y)}. And we have that

) =min{ * = e 1) < ),
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which proves that g is increasing.

It remains to show that

£(x) = sup {y cfo.R): T12Y) 5 g<y>}.

n
Fix rin [0,R]". Then r € £~ (f(r)), so g(f(r)) < Hr=LUD) Thys,

#(ri >y)

f(r) <sup {y €[0.R]: =

> g(y)}

Let ¢ > f(r), and let s be an element of £~ !(¢). If #(r; > ¢) were greater than or equal

to #(s; > ¢), applying lemmas andrepeatedly (in each dimension) would give

f(r)=F(s)=¢>f(r),

a contradiction.

Thus, #(r; > ¢) < #(s; > ¢). Since s was arbitrary, we have

#(r; > ¢) <min {#(x; > ¢):x€ f'(9)}.

Equivalently,

n

So ¢ is not in {y € [0,R] : Hriz) > g(y)}. Since ¢ > f(r) was arbitrary,

70z sup{y e 0.1 2 5 g |
We conclude that
) =sup{y e 0.1 122 > g | 0

5.5 Conclusion

Aggregation functions, as introduced in this chapter, provide a broad framework to analyze
all possible cardinal voting systems. Any function from R” to R which is anonymous, unan-
imous, and monotone can generate a cardinal voting system that is potentially independent
of irrelevant alternatives. Our framework is similar to one presented by Balinski and Laraki

in [4], except we use a weaker monotonicity requirement.

40



We focus on aggregation functions that are strategy-proof, which means a voter can
never, by submitting a dishonest grade, force the societal grade to move towards his honest
grade. We have characterized all such strategy-proof aggregation functions. Each one can
be characterized as the function that finds the intersection of the cumulative grade distri-
bution with a specific grading curve. We relate our characterization to one provided by
Moulin[12] which characterizes the strategy-proof aggregation functions as the functions
that compute the median of the n input grades with n — 1 specific fixed values. This ex-
tension of Moulin’s characterization into a characterization in terms of grading functions is
significant because it allows us to do three things. First, we can generate a family of ag-
gregation functions that each apply to a different number of voters. Second, we can better
understand the role of the n — 1 fixed constants in the aggregation process. Third, it provides
a basis for us to find the optimal aggregation function with respect to different criteria, as
we will do in later chapters.

The linear median was a specific strategy-proof aggregation function introduced in this
process. It is significant because it arises naturally from a simple continuous approval
voting model, yet it is disallowed from the Balinski-Laraki framework because it is not
strictly monotone. In the next few chapters it is shown to be quite an important aggregation

function which generates a valuable cardinal voting system.
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Chapter 6

EVALUATING GRADING CURVES WITH THE EUCLIDEAN NORM

One great advantage to dropping the strict monotonicity requirement and considering the
broader class of strategic medians, instead of only the order statistics, is that they can better
handle polarized situations. If all individuals submit maximal or minimal grades, then any
order statistic also yields an extreme grade. In these polarized cases, it may be more useful
to know how many individuals submitted high grades and how many submitted low grades
than it is to know the median of the grades submitted. Aggregation functions that mediate
polarity serve this function. .# is an example of a strategy-proof aggregation function that
mediates polarity. When all voters give extreme grades, it yields the arithmetic mean of
those input grades.

On the other hand, eliminating the strict monotonicity requirement admits all possible
strategic medians as acceptable, and requires accepting the responsibility of distinguishing
which ones are best for any given situation. One way to evaluate the suitability of an aggre-
gation function, f, is to determine the distance between the input values and the aggregated
output value, with respect to some norm. Since f takes an n-length vector as input and
yields a real number, we refer to ||(xy,...,x,) — f(x) - (1,...,1)|| as the distance between
the aggregation function’s inputs and outputs (with respect to any norm).

This chapter will briefly examine the aggregation functions that minimize the /9-norms
pointwise for ¢ > 1, but the bulk of the chapter will consider how to choose the strategy-
proof aggregation function that will minimize the /> distance between the inputs and the
output. It will be shown that if the input grades come from a uniform distribution, then the
ideal aggregation function is the linear median. Otherwise, we give a formula for generating

the optimal grading curve from the input grade distribution.
6.1 Notes on the grading language

At this point, it is evident that care should be taken in choosing the grading language to

use with a strategic median. With Moulin’s characterization of the strategic medians (as
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the median of the n votes along with n — 1 fixed values), it could make sense to use any
fully-ordered set as the grading language, as long as we had a sensible way to choose
the n — 1 fixed values. Our characterization of the strategic medians as the intersection
of the input grade distribution with a grading curve indicates that the strategic median is
closely related to the distribution and meaning of the input grades. And now, as we discuss
distances between grades, it becomes even clearer that the grading language should be an
interval scale, a numerical scale where the difference between two values is meaningful in
a consistent manner along the entire scale. Which scale should be used will be explored
later, but for now, we proceed with the general idea that we are working with an interval
scale.
6.2 Minimizing input-output distance

Let x = (x1,...,x,) be a vector of input values.

For an aggregation function f, the /'-norm distance between the inputs and outputs
at x is minimized when Y7 | |x; — X0y | is minimized, which happens when it is true that
#(x; < Xouw) = #(x; > xour ). If m is odd, then x,,, must be the median of xi,...,x,. If mis
even then x,, can be any value in the closed interval between the two middlemost input
values. So we note that the majority-grade is one aggregation function that everywhere
minimizes the /'-norm between its inputs and outputs. Strategy-proofness basically comes
for free in this case. As will be shown below, there is no other /4 norm where minimizing the
distance between the inputs and output on a pointwise basis will produce a strategy-proof
aggregation function!

The />-norm distance between the inputs and outputs of f at x will be minimized when

(i — xom)2 is minimized, which happens if and only if x,,, is the arithmetic mean of
X1,...,xn. Thus the arithmetic mean is the unique aggregation function that everywhere
minimizes the />-norm between its inputs and outputs. Since the arithmetic mean is not
strategy-proof, there is no strategy-proof aggregation function that everywhere minimizes
the />-norm between its inputs and outputs.

In fact, for any g greater than 1, the following theorem and corollary show that we can
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minimize the /?-norm distance between the inputs of f and its output on a pointwise basis

to form an aggregation function.

Theorem 14. (Jennings) If d : R — R is a strictly convex function with a minimum at
0, then the function f : R™ — R that minimizes Y." | d(x; —y) on a pointwise basis is an

aggregation function.

Proof. Fix x =xi,...,%p,. Then u(y) = Y/, d(x; —y) is strictly convex in y with a unique
minimum, so f is well-defined.

The function f is anonymous by construction. It is unanimous because if all of the x;
values are equal, then u(y) will be minimized at the common value.

Let yin be the y value that minimizes u(y). Let £ be identical to x except strictly larger
in the i™ component. We define ii(y) = Y7, d(# —y). For any y < y,u., because of the

convexity of d,

”(y) - “(y) = d(-xi _y) - d(-xi —)’) > d(x,\l _ymin) - d(xi _ymin) = ﬁ(ymin) - u(ymin)y

which means that it is impossible for the minimum to move to the left. This establishes the

monotonicity of f. O

Corollary 15. For g > 1, the function f that minimizes Y/ | |xi — f(x1,...,%,)|? on a point-

wise basis is an aggregation function.

Theorem 16. (Jennings) For g > 1, the function f that minimizes Y'7* | |x;i — f(x1,...,%m)|?

on a pointwise basis is not strategy-proof.

Proof. Fix x = x1,...,x,. Let d(y) = |y|? and u(y) = Y7, d(xi —y). Let yu, be the y
value that minimizes u. Let £ be identical to x except strictly larger in the i component,
and let (y) = Y, d(%; —y). Since ¢ > 1, d is differentiable everywhere, with increasing
derivative, hence d'(£; —y) > d'(xi —y).

& (Ymin) = t Ymin) —d' (% —y) +d'(x; —y) < 0. Since @ has a unique minimum, this

minimum must be to the right of y,,;,.

44



This proves that f is strictly monotone in each of the input components, which means

it cannot be strategy-proof. 0

Theorem 17. (Jennings) For 0 < g < 1 and m > 3, the function that minimizes the ex-
pression Y |xi — f(x1,...,x,)|? pointwise (restricted to the domain where the unique

minimum exists) is not monotone, hence doesn’t qualify as an aggregation function.

Proof. Let u(y) = Y, |x; — y|?. First, we note that for any interval a < b, if none of
X1,...,%y falls between a and b, then the minimum of u on [a,b] occurs at one of the
endpoints. This results from the fact that u is concave on (—eo,0) and (0, ), so when there
are no x values between a and b, then the function u on [a,b] is the sum of m concave
functions, hence is concave itself. From this, it follows that to find the minimum of u we

need only check the x; values. For convenience, we again define d(y) = |y|?.

Case (i): If mis even, let x; = - - - =Xz :O,x%H =-.=xu_1=1,andx,, =1+¢€.
u(0) = 2.(0) + (% —1)d(1)+d(1+¢) = (% —1)d(1)+d(1+e)
u(1) = %d(1)+ (gq)d(owd(g) - %du)ﬂz(e)
u(1+e) = Zd(1+e)+ (5 - 1) d(e) +d(0) = Zd(1+e)+ (% ~1)d(e)

In this case, u(0) is less than u(1) because d(1+¢€) < d(1)+d(g). And
m
u(0) < Ed(l +ée)<u(l+e),

so y = 0 is the unique global minimmum.

If we create £ by moving the first component of x down from 0 to —¢&, and the last
component down from 1+ € to 1, we have the reflection of the above situation, and y =1
is the unique global minimum for X.

Case (ii): If m is odd, we assign the first m — 1 input arguments as in the even case above.
The last input argument, x,,,, we assign to a large positive number N. Since the derivative of
d goes to 0 as y goes to infinity, we can choose N large enough so that d(N) —d(N — (1+¢))
is as small as we like. In particular, we choose N large enough that y = 0 is still the global

minimum for x and y = 1 is still the global minimum for £. O
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6.3 Minimizing distance in the strategy-proof space

In general, we desire to find the strategy-proof aggregation function that, over the domain of
input values, minimizes the /7-norm distance between its inputs and output. This requires
choosing a separate norm to apply as we integrate the /7-norm over the domain of input
values. The L?-norm, weighted by the probability distribution from which the input values
are drawn, is the natural choice. The analysis below proceeds using this norm.

Because of the ubiquity of the />-norm, we examine the °L? case first. As mentioned
above, the aggregation function that minimizes the />-norm is the arithmetic mean, which
is by far the most common way to aggregate a set of data.

Let p be a probability distribution with compact support. Define the lower endpoint
m = inf{x| [*_ p(y)dy > 0} and the upper endpoint M = sup{x| [, p(y)dy > 0}. Define E,,
for a,bin (m,M) as

Sy tp(t)di

E,(a,b) = W

E,(a,b) is the expected value of a number drawn from distribution p given that it is between
a and b. Technically E), is undefined where | ab p(t)dt =0, but we will overlook this fact
since we are only concerned with E,(m,-) and E,(-,M), where E, is always well-defined.

Define G, on the interval (m,M) as

x—E,(m,x)
Ep(xﬂM) _Ep(mvx) .

Gp(x) =
We note that lim,_,,,+ G,(x) = 0 and lim,_, ;- G,(x) = 1, and that G, is continuous.

Theorem 18. (Jennings) If G, is monotone, then the strategic median that uses G, as
its grading function is the unique strategy-proof aggregation function that minimizes the

P-norm distance from the input arguments over the probability distribution p.
6.4 Interpretation of G,

For any value of x between m and M, notice that

x=(1=Gp(x))Ep(m,x) + Gp(x)Ep(x,M).
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So G,(x) indicates the relative placement of x between E,(m,x) and E,(x,M). In fact, x
is the expected value of the mean of a data set where G, (x) is the proportion of the data
values greater than x.

Thus, when the grading curve can be chosen to equal G, (which is whenever G, is
monotone), the corresponding strategic median will always give the expected value of the
mean of the input arguments, as it will return x whenever the proportion of the input ar-
guments greater than x is G,(x). As mentioned above, the />-norm prefers the arithmetic

mean, so it is natural that this is the best strategic median according to the />-norm.
6.5 Proof of theorem L8]

Proof. Fix n. Our goal is to choose f from the family of strategy-proof aggregation func-

tions that minimizes:

E(fap):/mM"'/Mi(f(X)—xi)zﬁp(xi)dxn...dxl

m- =1

Let f be a strategy-proof aggregation function with grading curve g. Let oy, ..., o, be

the grading values of g as in lemma[I2] We use lemma[I2]and symmetry to rewrite E as:

E(((X],...,Ocn_l),p):

=l ;
j; j!(nij / / /a, / oj — x;) Ep(x;)dxn...dxl
i (n— ]—1 /O‘H'/ / / /x1 s (x1 —x7) ﬁp(xi)dxn...dxl

i=1

Note that the only form in which f or g shows up in this expression is by way of the real
numbers a;,...,0,_1. Let us consider this set of variables to be our primary parameters.

We fix kin 1,...,n— 1, and differentiate with respect to o:

E(Xk((ala"'7an—1)?p) =
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i=

n! Ok O
k'(n—k)‘/m /m /ock /ock ZZ O — X; H (x;)dx, . ..dx
“k

We note that E, does not depend on any of the other ¢;’s, so minimizing E is simply a

matter of optimizing each ¢; independently. First we scale E, to remove constants.

A Ol O n
Eak((ocl,...,ocn_l),p):/ / / / Ock—x, p()dxn . . .dx)
m m oy Qi1 =1
n—k

Now we change variables. Define P(x) = [, p(a)da. Then let ; = P(x;) and we have

dy; = p(x;)dx;. For notational ease, we define ¢ = P(0y).

Eak((al,...,an1),P)Z/()¢'--/()¢/q>1-'-/q)]Zn:(ak—P_](Xi))dxn...dxl

= np"*(1-9¢) oy
YRR (1 — o)k JY P (i)
X "R 9) T [ P ()

= 0" k(1 9) ey

—(n—k)¢" 11— §)* [ xp(x)dx
—k¢" (1= ¢)<L [¥ xp(x)dx

= 9" (1= 9) 0 (91— 9w — (1= £) (1= ¢) [ ap(x)dx— 59 [ xp(x)dx)
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Since ¢ = P(ay) = [ p(x)dx s strictly positive for o > m and 1 — ¢ is strictly positive

for oy < M, we consider E as a function of o on (m,M). This function is increasing when

m O

k Ol
o(1- 0y (1- 1) (1-0) [“aptoar— o [“aptar>o
Equivalently, (since ¢ = [* p(a)da and 1 — ¢ = fé‘f p(a)da)

(mew Ja 1) ) o Itapdx

Jm PX)dx [ p(x)dx Jm' P(x)dx

Here we note that
_ Imxp()dx _
-~ 051(7 -~
S P(x)dx

and
fa/\ xp( )dx <

W=

so our condition for E to be increasing becomes:

I ()
k ak m ( )dx
- M 4 = Gp(ak)'
Sy 2Pz % xp(o)dx
Jal p()dx [y plx)dx

Similarly, E as a function of oy on (m,M) will be decreasing when

it
= > = Gp(a).
fakaP(x)dx _ f,%’;xp(x)dx p( k)
[Tpdx i pd

bl

If G, is one-to-one, E will be decreasing when o < G, ( ) and increasing whenever

o> G, 1(%), so E will have one minimum, at o = G,! (%). This must hold for all k from

1 ton—1, and since n was arbitrary, it must be true for all n.

Since 0y is defined as supg™!([0, n]), it follows that ¢ = G, is the unique grading
function that will minimize the /> norm between the inputs and the output. O
6.6 Example

p(x)=3x*on [0,1] withm=0and M = 1.
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See figure[6.1]
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Figure 6.1: p(x) = 3x? (left) and its grading function G,, (right)

6.7 Uniform Distributions

If the input distribution is uniform on a certain interval [m,M], then the G, will be the
line that goes through points (m,0) and (M, 1). So if the input distribution is uniform on
[0,1], then G, (x) = x, and if the input distribution is a uniform distribution on [0.5, 1], then
Gp(x) =2(x—0.5). It is instructive to observe how G, changes as we move between these

two distribtions. Consider the family of split uniform distributions

1

IA

s ,0<x <

NS}

ps(x) =
2—s 7%§-XS

—

1

167 %, 1 are shown in figure

as we vary s from O to 1. The grading functions for s = 0, ﬁ,

6.2l
6.8 Non-monotone G, functions

The distributions in figure [6.2] with s = 0.1 and s = 0.01 are examples of distributions that

result in non-monotone G, functions. Consider the case when s = 0.1:
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Figure 6.2: Five piecewise uniform distributions (left) and their corresponding G, functions
(right)
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19 1
10 ,ESXSI
z 0<x<li
E,(0,x)={ ? ’ 2
b 38x2—9 1 <
Jor36 2 =X¥<1
2
22 0<r<)
Ep(x71):
5 psxsl
20x—2x2 1
20—20x 0<x <5
Gp(x) = 2 3 |
38X2(;C3;3+9 7§§-XS1

Non-monotonic G, functions do not qualify as grading functions. A non-monotonic G,
function indicates that for certain values of y, the set G;l (y) has more than one value, in
which case there is more than one local minimum in attempting to minimize the />-norm.
Therefore, the appropriate way to convert G, into a one-to-one function is to go back to the
construction of G, in the proof of theorem and choose the global minimum from among
the local minima. Specifically, one must compute the following integral

. " Jpxp(x)dx  [Map(x)dx
o' a-o0) (z—a—y) > LMp(x)dx>dz,

between the two local minima. If the integral is positive, then the leftmost minimum is the
global minumum. Otherwise the rightmost minimum is the global one.

Notice that this integral depends on 7, so for a given probability function, it is possible
for Gp to depend on n, the number of voters. In fact, for the split uniform distribution with
s = 0.08, the solutions to G, (x) = % are x = 0.373, x = 0.536, and x = 0.596. The middle
one represents a local maximum. 0.373 is the global minimum when n =3 and k = 1 and
0.596 is the global minumum when n = 6 and k = 2. The error functions that we seek to

minimize in these cases are shown in figure
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Figure 6.3: Error functions for a piecewise uniform distribution for 3 and 6 voters. Chang-
ing the number of voters can change the relative vertical positions of the local minima, thus
altering the global minimum.
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6.9 Distribution of distributions

Suppose, instead of knowing that the input grades are drawn from a certain distribution,
we have a family of probability distributions {p,}sco from which one distribution will
be chosen, and then all the input grades will be drawn from that distribution. Ideally, we
would be able to collapse the family of distributions into one master distribution and find
the grading curve with the G, formulation given above. Unfortunately, this approach is
unsuccessful. The grading function must be found by adding the error terms for all the
probability distributions and re-solving for 7 as in the proof of theorem For generality,
we suppose that Py is the probability with which p; will be chosen as the grading input

distribtution. Then, the total error term is

“ Ol Ol
Eq = Pd/ / / / Z Otk—xl pa(x;)dx, . ..dx;dd
de® m m o
—k

Ot M
= / Pd¢ 1 — ¢d) n (ak _ (1 _ k)fm xpd(X)dx B kfak xpd(x)dx> ad.
" (pd n l—([)d

Thus, the formula for the master grading function is

n ',gkx x)dx
fie Pagly (1 = 9a)* (o — L22e40) g

G@ = j.M xpd(x)dx Ol 4 .
fde@ Pd(i):,’*k(l — )k < aklfd)d _m xzq))z(x) x> dd

We note that the grading function in this situation, varies with n, the number of voters.
6.10 Conclusions

It is natural to seek an aggregation function where the output value is representative of
the input data. Any aggregation function must be unanimous, anonymous, and monotone,
which ensures at least a minimal level of correspondence between its inputs and output.
Using the /9-norms to measure the distance between the inputs and output of an aggregation
function allows us to examine more deeply the quality of the data aggregation.

For g > 1, we can generate an aggregation function pointwise by minimizing the appro-

priate norm for each vector of input values in the domain. For ¢ > 1, this generates a unique
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aggregation function that is not strategy-proof. For ¢ = 1 this generates a family of satis-
factory aggregation functions, including the majority judgment, which is strategy-proof.

It is also possible consider just the strategy-proof aggregation functions and find the one
that minimizes the /9 distance between the inputs and the output. In this chapter, we have
done so for the />-norm and found a formula that gives the optimal grading curve for a given
input probability distribution. The formula will generally yield monotone grading curves
that are independent of the number of voters, but for some grading distributions, it will
yield non-monotone grading functions which must be monotonized. The monotonization
procedure is outlined, and in this case the optimal grading curve may change depending on
the number of participating voters. The next chapter will cover other /4-norms.

For the specific case when the input grades come from a uniform distribution, the opti-
mal grading curve for the *>-norm is the diagonal grading curve, which corresponds to the
linear median. This Euclidean norm is one of the most commonly used norms, which gives
additional weight to the linear median. Additionally, our determination that the strategic
medians require an interval scale for the grading language indicates that the distance be-
tween grades has an important meaning that should be consistent through the entire grading
scale. As such, we should be biased towards treating the input distribution as uniform and

towards using the linear median if at all possible.
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Chapter 7

EVALUATING WITH OTHER NORMS
While the /' and /> norms are the most interesting because they are the most common, in
this chapter we continue the analysis of the previous chapter in minimizing the /¢ distance
between the inputs and the output of strategy-proof aggregation functions. We also exam-
ine how much influence one voter is able to have in swaying the final grade, seeking to

minimize this quantity with respect to different L¢ norms.
7.1 Minimizing the input-output distance for various norms

As in theorem when we are dealing with probability distribution p below, we define
P(x) = [, p(a)da

Theorem 19. (Jennings) For g > 1, the grading curve that minimizes the l9L1-norm within
the space of strategy-proof aggregation functions, for input coming from probability distri-

bution p is
[0 pleyae \ !

S p(t)d

S (x=1)2" 1 p(2)dt

Gp(x) =1+ I
I p(t)dt

if it is monotone.

Proof. We desire to minimize E(f) = [ - M7 |xi — f(x)|TT, p(x:)dp - . dxy.
Fix n a natural number. Let f be a strategy-proof aggregation function with grading

values a,..., 0,1 asin lemman 12| We use this lemma and symmetry to rewrite E(f) as

g (n—j)! / // /aZl|xf—“f|qﬁp(xf)dxn...dxl

_|_Z = ]_1 /a,+./ // /Xzi|x,'—x1|qilﬁp(xi)dxn...dx

n—j—1

We differentiate with respect to ay:

E,(f) = k'gan'k /ak // /uMnkak—xl lln]lp(xi)dxn...dxl

k=1 i
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k‘ I’l k ay i= .

i=1

and set that equal to zero:

@3

0= (n—k)P(ar)" (1 —P(ak))k/ p(x)(ax —x)7 dx

m

M

—kP(a)" (1 = P(ag))*! / () (x — )T dx

&3

ag

(n—k)(1—P(ay)) / () (ax —x)7 ' dx = kP(ay) / ) (= @)t

m ak

n—k _ Pla) [y p(x)(x—a)? 'dx
ko (1=Plax)) [y p(x)(ax —x)4~'dx

o) —a)rtar\ !
[

o P(0)dt
n Il p(0) (1)1~ dt
K p(t)de
As in theorem [T8§] if the right-hand side is monotone, then it generates the unique grad-

ing curve that minimizes the /¢ norm:

-1

S =) p(r)de

X
M

)~

1
N Je p(e)dr
Gplx)= | 1+ TE )T p(r)dr
Snp(t)dt

O]

This result generalizes, and agrees with, the />-norm result proven in theorem As
in that theorem, if G, generates a non-monotone candidate grading function, it can be
monotonized with a similar process.

In the case where we are dealing with the uniform distribution, G, becomes

1
14 (M=xyat’

X—m

Gp(x) =
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x—m
M—m

which is consistent with our earlier results that G,(x) = 1 when g = 1 and G,(x) =

when g = 2. As g goes to oo, the grading curve will approach the step function:

0 ,ifx<2M

1 ifx> M

An actual step function is not a true grading curve, as it fails to satisfy g(y) > 0 for all
y > 0. Even if we replace the O with some very small positive number, such a grading curve
is not very useful, because it will yield a strategic median that almost always gives the same
output grade. If the step is at x = s, for instance, then the strategic median will output the
grade s whenever at least one of the input arguments is less than s and at least one of the
arguments is greater than s. For large n, this is practically all of the time. When all of the
arguments are less than s it will return the maximum of the arguments and when they are
all greater than s it will return the minimum argument.

One could argue that a grading curve that is close to a step function, but still continuous,
generates an aggregation function that is reminiscent of approval voting. In the case of the
function above, any input grade above @ is considered approval and any grade below
that point is considered disapproval and the output grade is an increasing function of the
number of approvals received. It would be silly to actually run an approval election this
way, asking voters to submit grades on a scale between m and M and choosing the winner
to be the one who received the most grades above #, because it asks the voters to submit
so much more information than is actually used. It does, however, have the advantage of
being able to break ties if more than one candidate is approved by everyone (choose the one
with the highest minimum grade) or if all candidates are disapproved by everyone (choose
the one with the highest maximum grade). In any case, this relationship between strategic
medians in the limit and approval voting may indicate that there is some sense in which
approval voting is the system that minimizes the /L distance between the input grades
and the output grade. In truth, this step function is being chosen as the ideal grading curve

for the /L™ norm not because of any relationship to approval voting, but because of its

degenerate behavior of almost always assigning a societal grade of #
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In summary, the ideal strategic median for keeping the output grade close to the input
grades depends on the norms used when integrating over the possible profiles. To use the
I'"L'-norm is to minimize the expected value of the absolute difference between the output
grade and the input grades, which is accomplished best with the majority judgment voting
method (a horizontal grading curve). As we minimize the distance between inputs and
outputs for the general /7L7-norm, the optimal grading curve gets steeper with increasing q.
We note that if ¢ =2 and we are dealing with a uniform distribution for the input grades,
then the ideal grading curve is the diagonal one (corresponding to the linear median). At
q = oo, the ideal grading curve is a step function, with the step at the midpoint between the

extents of the grading language.
7.2 Manipulability

For this section, we restrict the the range of grades is 0 to 1. Consider the cumulative grade
distribution function d(xy,...,x,;y) = @ This comes from the definition of a strategic
median, and it is what gets compared against the grading curve in order to determine the
output grade.

If one voter drops out of the electorate and his grade was r, this cumulative distribution
function will shift downwards to the left of » and upwards to the right of » by a magnitude of
no more than ﬁ If a voter is added to the electorate, the cumulative distribution function
will shift upwards to the left of his vote and downwards to the right of it, by no more than
#. If a voter changes his vote, the cumulative distribution function will shift upwards or
downwards on the interval between his old vote and his new vote, by no more than %

In any of these cases, if the grading curve is horizontal, then a small vertical shift in

the distribution function can cause a large shift in the output grade. However, if we choose

the diagonal grading curve (the linear median), then adding a voter, removing a voter, or

1 1 1
n—1° n+l1° or n

allowing one voter to change his vote can only change the output grade by
respectively.
In general, we define A(g, €) to be the maximum horizontal change in a grading curve,

g, caused by moving up or down by €. Then, for the strategic median generated by grading
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curve g, adding a voter, removing a voter, and allowing a voter to change his vote can only
change the output grade by A(g, ﬁ), A(g, ﬁ), and A(g, %) respectively.

There are many possible definitions of manipulability. If manipulability is defined to be
the maximum effect on the final grade that one voter can have by changing his grade, over
all possible voter input profiles, then the linear median is the strategy-proof aggregation

function that minimizes manipulability.

Theorem 20. (Jennings) The linear median is the unique strategy-proof aggregation func-
tion that minimizes maxy, .  cfo,1]f (X1, Xn—1,1) = f(x1,...,%,-1,0) for any dimen-

sion n.

Proof. Fix the dimension n. First we will show that every aggregation function (includ-
ing non-strategy-proof ones) has maxy, . efo,1]f(X15-++,%n—1,1) = f(x1,. .., X0-1,0) > L

Let f be an aggregation function.

= (f(1,...,1)=f(1,...,1,0)) +--- 4+ (f(0,...,0,1) — £(0,...,0))

< nmemaxy, oo efo) S X1, 1) = f(x1, - %0-1,0)
(The arithmetic mean is an example of an aggregation function that is not strategy proof
that achieves this minimal manipulability.)

Now if f is a strategy-proof aggregation function, we obtain its grading curve g and its
grading values «y,...,Q,—1. Again, for convenience, we define g = 0 and o, = 1. For
each i in 1,...,n, there is an input profile where one voter can cause the output grade to
move from ¢;_; to ;. Namely, if n — i voters give grades of 0 and i — 1 voters give grades
of 1 then the last voter will be able to swing the output grade between o;_; and ¢;. Also,
since the aggregation function can be formulated as the median of the n submitted grades
along with «,..., 0,1, it will be impossible for any one voter to unilaterally move the

output grade across any of the a; values, so

max  f(x1,...,%-1,1) = f(x1,...,%,—1,0) = max oG — ;.
X1peeXn—1€[0,1] i€l,...n

60



This indicates that the o; values should be spaced evenly within to open interval from O to 1.
The diagonal function is the unique grading curve that accomplishes this for all dimensions

n. O

The fact that the linear median minimizes this measure of manipulability is indepen-
dent of the distribution of the input grades. Minimizing this “maximum” manipulability is
equivalent to minimizing the L”-norm (uniform-norm) distance between f(xj,...,x,—1, 1)

and f(x1,...,%,_1,0) on [0, 1]"~!. We can also attempt to minimize a different Z¢-norm.

Theorem 21. (Jennings) Fix the dimension n, and fix g > 1. For input coming from prob-
ability distribution p, if there is a unique strategic median f that minimizes the L1-norm
distance between f(x1,...,x,_1,1) and f(x1,...,%,_1,0) on [0,1]"!, then the correspond-

ing grading values ..., 0y, satisfy:

n—j \ P& /[:jl (;gj))n_.(aj—x)qﬂdx

Proof. We desire to minimize

, forj=1,...,n—1.

1 1 n—1
E :/O /0 P11y 1) = (51 2n 1, 00) [ i)t .. dixs.
i=1
We divide the integral into four pieces depending on whether (..., 1) and (..., 0) are
equal to one of the x; values or one of the o; values, again using lemma[I2]and symmetry

to simplify:

n , O 1 o1 ol 1 n—1
E:Zm/ / / / (Otk—Olk_l)qu(x,')dxn,l...dx1
0 0 Q Q i=1

k=1 N ,

1! n O—1 Q1
Z n—0)(k—2)! / / / / / X1 — O_1) (xi)dx,,,l...dxl
-1

Z —k=D)I(k=D)! 1 k—1) / / / / / o —x1)? (xi)dxn,l...dxl
k=1 -1 Otk (o778
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1 x| X2 x 1 1 n—1
Z (n—k—1)1(k—2)! 1 k—2)! / / / / / / (xl_x2)qu(xi)dxn71~--dxl
k=1 _1Joy_1 JO 0 X1 X1 =1

n—k—1 _

For j=1,...,n—1, we can take the partial derivative with respect to @;. (Knowing that
the original integrand, f(...,1) — f(...,0) was continuous, we can avoid worrying about

the boundaries of these integrals and just differentiate the integrands.)

(X,', o 1 o1
Eq = qgr—t— | IR R (Ot~—O£~,1)q71H’~1;1p(Xi)dxn71---dxl
J n=D'G-1)" J, o Ja Ja T i=1

J J
%/—’A,_/
a;j O‘J
110
o (n— j 1 / / / / aj+1 a] q Hz lp(xi)dxn,l...dxl
05]+1 ®j+1
n—j— l
Qjt1 [0 a; —1
o (n—j— 1 1(j-1) / / / / / X1— OC] IT] x, dxn 1...dx;
n—j— 1

+ 4= ]1/ / // / _xlqlnpxzdxnl .dxy
-1 a_] (X i=1

= qWMP(aj,l)”*f(l — P(a;)) Mo — )

- CIWP(%')"*F](I—P(aj+1)j(aj+1—aj)qfl

A P(0y)" ! g (1= P(x)) ™ (x— a)4 7" p(x)dx
+ gt (1= P(ey)) ! g7 P (o —x)7 ! p(x)dx

We integrate these two integrals by parts with dv = (1 — P(x))/~!p(x)dx for the first

integral and dv = P(x)" 7/~ !p(x)dx for the second integral, which eliminates the first two

terms and leaves

Eoy = —alg — D=l Ple) ™ [ (1= P@) (- o) 2dx

o .
+alg = 1)t (1= Py ™ [ Pl oy —2)7 2
We set this to zero:

aj

n—j— a; )~ .
P [ (1= Py - ag)2dx = S [ iy — )2

J
a; o1
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O]

This gives us n — 1 equations to solve for , ..., o, (since ap =0 and o, = 1). Each
equation relates of;_1, o, and @ 1, and the equations are generally well behaved. For fixed
o1 and o1, the right hand side of the equation is continuous for «; in between those
values. It approaches infinity as o; approaches ;_ from above and zero as «; approaches
o1 from below, so there will be a unique «; that satisfies the equation. It is probable,

though unproven, that there is always a unique solution to this system of equations.

Theorem 22. (Jennings) For any dimension n, and for probability distribution p, the
strategic median f that minimizes the L'-norm distance between f(xi,...,x,_1,1) and
F(x1,...,%0-1,0) on [0,1]""! is characterized by grading values a, ..., which are all

equal, with the common value that satisfies [ p(t)dt = 3.
Proof. For g = 1, the Eq; equation from the proof of theorem would be:

Eoq, = qg—imiP(ey-1)"/(1—P(oy)) ™!
4Gy Pey)" ™ (1= P(oyir)
gt Po) I 5 (1= P plx)da

+ e (L= Ple) ™ gl P()"/ " p(x)dx

= mP(e-1)" (1= P(ay))/ ™!

— P (ey) T (1= Pagi)/

— e Pe) T (1= P(ay))! = (1- Pay)))
+ qpigom (1= Play) ™ (P(ay)"™ — P(o-1)" )

Setting this to zero, we get:
0= —(n—j)P(e)" /" (1= P(ay)) + jP(0;)" /(1 = P(a;))’"
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j
L—1-P(a;
L 1-P(a)

This indicates a decreasing grading function, y = 1 — P(x). Of course, this is not a valid
grading curve, and it indicates that all of the ¢; values coalesce to the same real number and

the relevant function is a step function. So we proceed with the assumption that all of the

a; values equal a common value, o.

We go back to the definition of E:

1 1 n—1
E:/O /0 (f(xlj...,xn,l,1)—f(xlj...,xn,l,O))Hp(x[)dxn,l...dx1

i=1

1 1 n—-l
:/0 /0 Ferxan, D) [ p(i)dx-y .. dx

i=1

1 1 n—1
—/0 /0 f(xl,...,xn_l,O)Hp(xi)dxn_l...dx1

i=1
f will return the common ¢ value when at least one of the input arguments is less than

« and at least one is greater than «, so
1
E= <a(1 —(1=P(a))" Y+ (n— 1)/{1 x(1 —P(x))”‘%lx)
- (oc(l —P(@)" )+ (n—1) /O axP(x)"_zdx)

0

=aP(a)" '—(1-P@)" )+ (n—1) </a] x(1—P(x))" 2dx — /axP(x)”zdx>

Setting the derivative equal to zero:
0=Eq= (P(a)" " = (1=P(a))" ") +atp(er) (n—1)(P(0)" >+ (1 = P(a))"?)

+(n—1ap(a)(—(1—P(e))"?) = P(a)"?)
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As was the case earlier, a step function emerges as the ideal grading curve not because
of any coincidental relationship to approval voting, but because it causes the aggregation
function to return the same grade practically all of the time. This does technically mini-
mize the expected value of a lone voter’s ability to influence the output grade, but only by
completely ruining the expressiveness of the aggregation process.

These three theorems indicate the grading curves that will minimize the effect one voter
can have on the output grade as different L7 norms are used to measure the effect. Using
the L'-norm is equivalent to minimizing the expected value of one voter’s influence, which
is done by using a step function as the grading curve, with the step occurring at the point
where an input grade is equally likely to be above as below. As ¢ is increased, the optimal
grading curve gets less and less steep until it becomes diagonal at g = . Using the L™-
norm is equivalent to minimizing the maximum possible influence that one voter may have,
which is accomplished by the linear median (a diagonal grading curve) independent of the

distribution of the input grades.
7.3 Conclusion

In this chapter, we were able to determine the grading curves that will minimize the dis-
tance between aggregation function inputs and outputs for norms other than the Euclidean
norm. Additionally, we determined the grading curves that minimize the influence of single
voters according to different L? norms. The linear median is the strategy-proof aggregation
function that minimizes single voter influence according to the L™ norm.

In our exploration of aggregation functions, especially in focusing on strategy-proof
ones, we have discovered that the linear median is quite a valuable aggregation function.

The specific advantages discovered up to this point are:
e The linear median is strategy-proof.

e The linear median handles polarized situations well, returning the arithmetic mean of

the input grades.
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e If the input grades are assumed to come from a uniform distribution, then among
all strategy-proof aggregation functions, the linear median minimizes the Euclidean

norm distance between inputs and output.

e Regardless of the distribution of the input grades, the linear median is the unique
strategy-proof aggregation function that minimizes the worst-case (L) influence that
one voter may have on the outcome. It achieves the theoretical minimum possible for

any aggregation function (even non-strategy-proof ones).!

A further advantage of the linear median with a grading language of 0-100 is that it is
probably the easiest strategy-proof aggregation function to understand outside of the order
statistics. (In this case, the linear median will be the largest number, x, where x percent of
the voters gave a grade of x or higher.)

The main disadvantage to the linear median is that it requires an interval scale. This
means we need to choose a numeric grading scale, but it also means that we need to choose
one that the voters are likely to use linearly. This is a psychological question as much
as a mathematical one. We propose that a scale of 0 to 100 be used, and that the voters
are instructed to indicate “what approval rating they give each candidate”. The 100-point
scale is used, in large part, because using any other grading scale with the linear median
will be far more difficult to explain. This scale, however, does carry the risk that some
people in the United States will interpret as it is used in the educational system, where 75
means “acceptable” and 50 means “failing”. We hope that instructing voters to give their
approval rating for each candidate will help them avoid this trap. We also hope that time
and experience with the linear median will help people become familiar with the 100-point

scale in an election context and use it more linearly over time.

Although there is at least one non-strategy-proof aggregation function, namely the
arithmetic mean, which achieves this same theoretical minimum.
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Chapter 8

CARDINAL SYSTEMS IN A COMPETITIVE CONTEXT

In chapter [5| we examined the criterion of strategy-proofness and found all aggregation
functions where no voter can, by submitting a dishonest grade, move the societal grade
closer to his honest grade. This implies that honesty is a dominant strategy for voters deal-
ing with a strategy-proof aggregation function. In chapter[7] we analyzed the manipulability
of aggregation functions in another way. We measured the influence one voter could have
on the election outcome if all the other votes remained unchanged. Both of these methods
of analyzing manipulability apply to the process of aggregating n grades into one societal
grade. We desire here to examine strategies and incentives in an election context, where
grades are being aggregated for multiple candidates simultaneously.

In a competitive environment such as an election, a voter’s utility does not depend only
on the final scores of the candidates and how close they are to the voter’s personal scores.
It also depends on the election outcome. This means that even when we use a strategy-
proof aggregation function, which incentivizes honesty in the single output case, there are
profiles in the multi-candidate case where a voter can gain an advantage by voting dishon-
estly. Indeed the criterion we have called “strategy-proofness” is, in [4]], more accurately
called “strategy-proofness-in-grading”. It is distinguished there from “strategy-proofness-
in-ranking”, which would be a voting system where it is never possible for any voter to
change the winner to one he likes better by submitting a dishonest vote. In [3]], Balinski and
Laraki prove that there is no strategy-proof-in-ranking aggregation function.

As an introduction to competitive context, we will examine the no-show paradox. Then
we present random-manipulability and voter-manipulability simulation data for range vot-
ing, majority judgment, and the linear median in the same vein as that presented for ordinal

systems in chapter
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8.1 The no-show paradox

One criticism that has been raised against the majority judgment method is that it is sus-
ceptible to the no-show paradox, where the addition of a voter who prefers candidate A to
candidate B can cause A to lose and B to win. Here is an example:

6: A-90 B-40

5: A-10 B-40.
Here A has a majority-grade of 90 and B has a majority grade of 40, but if another voter is

added who grades them both very poorly but slightly prefers A:
1: A—10 B-0,

then A’s majority-grade falls to 10 and B’s remains at 40. So the addition of a voter who
prefers A to B indeed causes the winner to change from A to B. Range voting is not suscep-
tible to this no-show paradox.

One of the contributors to the no-show paradox in majority judgment is that there are
profiles where the majority-grade changes drastically with the addition of just one voter. As
shown in chapter[7] we can choose a strategy-proof aggregation function where a lone voter
has considerably less influence on the election outcome, thereby decreasing the likelihood
of the no-show paradox. In the above example, the linear median of the scores of candidates
A and B before the addition of the twelfth voter are 54.5 and 40, respectively, and after the
addition of the last voter they are 50 and 40, so the no-show paradox is avoided by the linear
median in this case.

It is not possible, however, to eliminate the no-show paradox entirely. Here is an exam-
ple of a profile where the no-show paradox will occur with the linear median:

7: A—100 B—69
3: A-0 B-069.
With this profile A’s score is 70 and B’s score is 69, so A wins. If another voter shows up

who prefers A to B, but grades them both relatively poorly:

1: A—60 B-—50,
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then B’s score remains at 69 but A’s score decreases to 63.6, so now B wins. Again, the
addition of a voter who preferred A to B has caused the winner to change from A to B.

In both of these cases, if the additional voter had given A a high enough grade, then A
would’ve remained the winner, so in addition to illustrating the no-show paradox for their
respective voting systems, these profiles show a case where a voter would have the incentive

to vote dishonestly.
8.2 Random and voter manipulability

As a simple measure of how manipulable are these cardinal voting systems, we use the same
measures used in chapter [3] namely random manipulability and voter manipulability. For
cardinal systems, of course, instead of their preferences being drawn from the set of possible
candidate orderings as they were for ordinal voting systems, the voters’ evaluations of the
candidates are chosen uniformly from the set of grade tuples. It is then determined how
likely it is for a random manipulation or a deliberate manipulation by one voter to change
the winner to a candidate more preferred by that voter. In the three systems examined,
range voting, majority judgment, and linear median, the deliberate manipulation is devised
by giving a maximal score to anyone the voter prefers to the candidate who would win if he
voted honestly and a minimal score to the rest.

For each system, there is some ambiguity about whether a continuous or discrete in-
terval should be chosen for the set of possible grades, and if a discrete interval is chosen,
whether the voter is allowed to have preferences among candidates to whom he gives iden-
tical grades. We chose to use the grades for each system which we feel are most likely to
be used in real elections. For range voting, we used the integers from O to 10. For majority
judgment, we used six different grades. And for the linear median, we used the integers
from O to 100. For range voting and the linear median, whenever a voter gave identical
grades to two or more candidates, we simulated him as being indifferent between them.
That is, a random or deliberate manipulation that switches the winner to a candidate with

the same grade as the original winner is not considered a profitable manipulation. For ma-

69



jority judgment, the grading language seemed too coarse for this approach!, so instead we
simulated each voter’s opinion of each candidate on an integer scale from O to 11. These
opinions were then converted into the six-term grading language for purposes of simulating
elections, but for creating the voter’s deliberate manipulation and determining whether a
manipulation was profitable, the voter’s original opinion (on the scale from O to 11) was
used.

The results are shown in figure [8.1] and the corresponding data is found in appendix [A]
The manipulability scores of the ordinal systems from chapter [3|are shown in a shaded grey

region for comparison.
8.3 Results

For random manipulability, range voting performs best and the linear median worst, with
majority judgment in between. The cardinal systems seem to become more competitive
with the ordinal ones as the number of candidates increases. For three candidates, they are
competitive only with the most manipulable ordinal methods, but in six-candidate situa-
tions, they are competitive with the least manipulable ordinal methods.

For voter manipulability, majority judgment performs best, and the linear median is
close behind. Again the cardinal methods become more competitive with the ordinal ones
as more candidates are introduced. For three candidates, the best cardinal methods are
more manipulable than the worst ordinal methods, but when there are six candidates, the
best cardinal methods are almost as good as the best ordinal methods.

When performing the manipulation simulations on these cardinal systems, there are
several parameters that can be adjusted, mostly having to do with the grading language
used, as detailed above. We tried to choose configurations that would represent the likely
dynamics of real elections. It does seem like the linear median might be disadvantaged by

having such a large grading language, but the best way to correct this bias is not clear and

Ithat is, it would’ve been unfairly advantageous to the majority judgment by disallowing
too many profitable manipulations
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Figure 8.1: Manipulability of cardinal voting systems. Shaded areas indicate the manipula-
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bility range of ordinal systems examined in chapter [3| (see figure [3.1).
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should be the topic of further research. Still, these simulations give us a rough idea of the

manipulability of these cardinal systems and how they compare to the ordinal ones.
8.4 Conclusion

In previous chapters, it was shown that the linear median has many nice aggregation and
strategy-resistance properties when it is aggregating the grades for one issue or candidate
into a societal grade. In this chapter we explored the dynamics that were introduced when
grades are being aggregated for multiple candidates simultaneously. Although the linear
median is susceptible to the same no-show paradox that afflicts the majority judgment in
competitive situations, the linear median is more effective at limiting the effect that can be
had by one voter, so it should be able to decrease the frequency of the no-show paradox.
The majority judgment and the linear median, as well as range voting, were simulated in
mutli-candidate elections to determine how they fare in terms of random manipulability and
voter manipulability, the two manipulability measures introduced in chapter [3] The results
showed that with six candidates, the majority judgment and the linear median are compet-
itive with the best ordinal voting methods in terms of minimizing manipulability. Since
they satisfy so many theoretical and practical criteria and they offer the hope of elections
where each candidate is truly evaluated independently on his own merits, it is clear that
these two methods should be included in the canon of acceptable social choice mechanisms
and should be attempted in actual elections so we can determine how well they achieve the

improvements to social choice and public governance that they promise in theory.
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Appendix A

MANIPULABILITY SIMULATION DATA
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A.1 Random manipulability - Ordinal Systems
3 candidates
Number of voters
10 32 100 320 1000
Plurality 0.0204 0.0143 0.0087 | 0.0052 | 0.0030
Borda 0.0155 0.0093 0.0054 | 0.0032 | 0.0017
IRV 0.0135 0.0107 0.0067 | 0.0038 | 0.0024
Kemeny-Young 0.0096 0.0060 0.0036 | 0.0021 0.0011
Schulze 0.0097 0.0061 0.0037 | 0.0021 0.0011
Majority Borda 0.0188 0.0136 0.0088 | 0.0057 | 0.0031
Elections Simulated | 2,721,270 | 2,456,231 | 988,385 | 65,978 | 286,190
4 candidates
Number of voters
10 32 100 320 1000
Plurality 0.0305 0.0196 0.0124 | 0.0074 | 0.0040
Borda 0.0225 0.0130 0.0079 | 0.0042 | 0.0026
IRV 0.0226 0.0196 0.0126 | 0.0078 | 0.0044
Kemeny-Young 0.0156 0.0102 0.0066 | 0.0035 | 0.0021
Schulze 0.0158 0.0105 0.0067 | 0.0036 | 0.0023
Majority Borda 0.0266 0.0167 0.0098 | 0.0058 | 0.0030
Elections Simulated 62,894 155,325 71,989 | 124,683 | 115,376
6 candidates
Number of voters
10 32 100 320 1000
Plurality 0.0409 0.0263 0.0160 | 0.0096 | 0.0058
Borda 0.0286 0.0183 0.0108 | 0.0064 | 0.0037
IRV 0.0428 0.0341 0.0241 | 0.0162 | 0.0089
Kemeny-Young 0.0262 0.0169 0.0114 | 0.0067 | 0.0039
Schulze 0.0265 0.0186 0.0114 | 0.0068 | 0.0044
Majority borda 0.0361 0.0249 0.0129 | 0.0074 | 0.0042
Elections Simulated 60,939 60,901 61,062 | 60,862 | 61,910
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A.2  Voter manipulability - Ordinal Systems

3 candidates

Number of voters

10 32 100 320 1000
Plurality 0.0511 0.0354 0.0219 | 0.0132 | 0.0074
Borda 0.0779 0.0466 0.0272 | 0.0157 | 0.0085
IRV 0.0316 0.0232 0.0141 | 0.0087 | 0.0049
Kemeny-Young 0.0293 0.0169 0.0095 | 0.0053 | 0.0030
Schulze 0.0292 0.0167 0.0095 | 0.0054 | 0.0029
Majority Borda 0.0594 0.0389 0.0242 | 0.0144 | 0.0080
Elections Simulated | 2,721,270 | 2,456,231 | 988,385 | 65,978 | 286,190
4 candidates
Number of voters
10 32 100 320 1000
Plurality 0.1052 0.0715 0.0457 | 0.0270 | 0.0156
Borda 0.1498 0.0897 0.0521 | 0.0296 | 0.0169
IRV 0.0672 0.0532 0.0322 | 0.0196 | 0.0115
Kemeny-Young 0.0595 0.0358 0.0209 | 0.0113 | 0.0065
Schulze 0.0594 0.0353 0.0205 | 0.0109 | 0.0062
Majority Borda 0.1097 0.0589 0.0310 | 0.0172 | 0.0096
Elections Simulated 62,894 155,325 71,989 | 124,683 | 115,376
6 candidates
Number of voters
10 32 100 320 1000
Plurality 0.1839 0.1369 0.0876 | 0.0524 | 0.0311
Borda 0.2536 0.1492 0.0872 | 0.0515 | 0.0280
IRV 0.1361 0.1090 0.0740 | 0.0485 | 0.0274
Kemeny-Young 0.1127 0.0695 0.0422 | 0.0239 | 0.0134
Schulze 0.1130 0.0693 0.0404 | 0.0232 | 0.0131
Majority Borda 0.1541 0.0873 0.0488 | 0.0258 | 0.0144
Elections Simulated 60,939 60,901 61,062 60,862 61,910
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A.3 Random manipulability - Cardinal Systems

3 candidates

Number of voters

10 32 100 320 1000

Range voting 0.0217 | 0.0130 | 0.0074 | 0.0042 0.0024
Majority judgment | 0.0289 | 0.0167 | 0.0090 | 0.0050 0.0028
Linear median 0.0360 | 0.0211 | 0.0119 | 0.0063 0.0035

4 candidates

Number of voters

10 32 100 320 1000

Range voting 0.0253 | 0.0152 | 0.0088 | 0.0051 0.0029
Majority judgment | 0.0331 | 0.0198 | 0.0108 | 0.0059 0.0034
Linear median 0.0418 | 0.0253 | 0.0144 | 0.0078 0.0043

6 candidates

Number of voters

10 32 100 320 1000

Range voting 0.0288 | 0.0178 | 0.0106 | 0.0060 0.0036
Majority judgment | 0.0382 | 0.0247 | 0.0134 | 0.0074 0.0042
Linear median 0.0480 | 0.0297 | 0.0172 | 0.0094 0.0052

Each probability represents a simulation of at least one million elections.
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A.4  Voter manipulability - Cardinal Systems

3 candidates

Number of voters

10 32 100 320 1000

Range voting 0.2095 | 0.1253 | 0.0720 | 0.0406 0.0231
Majority judgment | 0.1222 | 0.0668 | 0.0368 | 0.0203 0.0113
Linear median 0.1280 | 0.0723 | 0.0414 | 0.0230 0.0130

4 candidates

Number of voters

10 32 100 320 1000

Range voting 0.2523 | 0.1508 | 0.0872 | 0.0493 0.0278
Majority judgment | 0.1471 | 0.0807 | 0.0447 | 0.0246 0.0138
Linear median 0.1543 | 0.0878 | 0.0502 | 0.0280 0.0161

6 candidates

Number of voters

10 32 100 320 1000

Range voting | 0.3056 | 0.1841 | 0.1070 | 0.0604 |  0.0346
Majority judgment | 0.1791 | 0.0989 | 0.0549 | 0.0301 |  0.0168
Linear median | 0.1882 | 0.1070 | 0.0613 | 0.0344 |  0.0194

Each probability represents a simulation of at least one million elections.
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